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Abstract—On-chip cache is often shared between processes that
run concurrently on different cores of the same processor. Re-
source contention of this type causes performance degradation to
the co-running processes. Contention-aware co-scheduling refers
to the class of scheduling techniques to reduce the performance
degradation. Most existing contention-aware co-schedulers only
consider serial jobs. However, there often exist both parallel and
serial jobs in computing systems. In this paper, the problem
of co-scheduling a mix of serial and parallel jobs is modelled
as an Integer Programming (IP) problem. Then the existing IP
solver can be used to find the optimal co-scheduling solution that
minimizes the performance degradation. However, we find that
the IP-based method incurs high time overhead and can only
be used to solve small-scale problems. Therefore, a graph-based
method is also proposed in this paper to tackle this problem. We
construct a co-scheduling graph to represent the co-scheduling
problem and model the problem of finding the optimal co-
scheduling solution as the problem of finding the shortest valid
path in the co-scheduling graph. A heuristic A*-search algorithm
(HA*) is then developed to find the near-optimal solutions
efficiently. The extensive experiments have been conducted to
verify the effectiveness and efficiency of the proposed methods.
The experimental results show that compared with the IP-based
method, HA* is able to find the near-optimal solutions with much
less time.

I. INTRODUCTION

Modern CPUs implement the multi-core architecture in

order to increase their processing speed. Often, performance

critical resources such as on-chip cache are not entirely

dedicated to individual cores. This introduces resource con-

tention between jobs running on different cores of a processor

and consequently causes performance degradation (i.e., slows

down the job execution) [21]. In order to reduce the impact

of resource contention, many solutions have been proposed in

recent years. In comparison to architecture-level [24], [28] and

system-level solutions [23], [32], software-level solutions such

as contention-aware co-schedulers [12], [16], [35] attract more

researchers’ attention because of its short development cycle.

Results from these studies demonstrated that contention-aware

co-schedulers can deliver better performance than conventional

schedulers.

Existing studies of the co-scheduling problem can be classi-

fied into two categories. Researches in the first category aims

∗ Dr. Ligang He is the correspondence author

at developing practical job scheduling systems that produce

solutions on a best effort basis. Algorithms developed in

this category are often heuristics-based in order to reduce

computation cost. The work in the second category aims to

develop the algorithms to either compute or approximate the

optimal co-scheduling strategy (referred to as the optimal co-
scheduling problem in the rest of this paper). Due to the

NP-hard nature [19] of this class of problems, obtaining an

optimal solution is often a computation-expensive process and

is typically performed offline. Although an optimal solution is

not suitable for direct uses in online job scheduling systems,

its solution provides the engineer with an unique insight into

how much performance can be extracted if the system were

best tuned. Additionally, knowing the gap between current

and optimal performance can help the scheduler designers to

weight the trade-offs between efficiency and quality.

There are some research studies in contention-aware co-

scheduling [13][17]. To the best of our knowledge, the existing

methods that aim to find the optimal co-scheduling only

consider the serial jobs [19]. However, there typically exist

both serial and parallel jobs in the computing systems, such

as Clusters and Clouds [31], [15], [27]. As shown in [19],

when a set of serial jobs are scheduled to multi-core computers

(with each job being scheduled to a core), the objective is to

minimize the sum of the performance degradation of all serial

jobs. However, this is not the case for parallel jobs.

We use Figure 1 to illustrate why different considerations
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Fig. 1: An illustration example for the difference between

serial and parallel jobs in calculating the performance degra-

dation
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should be taken when co-scheduling parallel jobs. The figure

considers two co-scheduling scenarios. In Fig.1a, 4 serial

jobs (i.e., 4 processes p1, ..., p4) are co-scheduled on two

dual-core nodes, while in Fig.1b a serial job (p4) and a

parallel job with 3 processes (i.e., p1, p2 and p3) are co-

scheduled. Di drawn above pi is the degradation of pi in the

co-scheduling solution. The arrows between p1 and p2 as well

as between p2 and p3 represent the interactions between the

parallel processes. In Fig. 1a, the objective is to minimize

the sum of the performance degradation suffered by each

process (i.e.,D1+D2+D3+D4). In Fig.1b, the performance

degradation (i.e., increased execution time) of the parallel job

is dependent on the processes that has been affected the most

and therefore completing the execution last. Therefore, the per-

formance degradation of the parallel job should be computed

by max(D1, D2, D3). The objective in Fig.1b is to find the co-

scheduling solution that minimizes max(D1, D2, D3) + D4.

In this paper, we propose the contention-aware co-scheduling

algorithms that recognize this distinction.

In this paper, we developed two methods, an Integer

Programming-based (IP-based) and a graph-based method, to

find the optimal co-scheduling solution for a mix of serial

and parallel jobs. In the IP-based method, the co-scheduling

problem is modelled as an IP problem and then existing IP

solvers can be used to find the optimal solution. We find that

the IP-based method incurs high time overhead. Therefore,

a graph-based method is also developed in this paper. In the

graph-based method, the co-scheduling problem is represented

in a co-scheduling graph, and then a Heuristic A*-search

(HA*) method is designed to find the near-optimal solutions

much more efficiently. A communication-aware process con-

densation technique is proposed to further accelerate the HA*

method.

The rest of this paper is organized as follows: Section II

shows how we model the problem of co-scheduling both serial

and parallel jobs as an Integer Programming problem. Section

III presents the graph-based method and Heuristic A*-search

method to find the near-optimal co-scheduling solutions. In

Section IV, we conduct the experiments to evaluate the effec-

tiveness and efficiency of the co-scheduling methods proposed

in this paper. Related work is discussed in Section V. Finally,

section VI concludes this paper.

II. MODELLING CO-SCHEDULING AS INTEGER

PROGRAMMING PROBLEMS

In this section, Subsection II-A first briefly summarizes how

co-scheduling serial jobs is modelled as an IP problem in [19].

Then Subsection II-B presents how we model the problem

of co-scheduling a mix of serial and parallel jobs as an IP

problem.

A. Co-Scheduling serial jobs

The work in [19] shows that due to resource contention, the

co-running jobs generally run slower on a multi-core processor

than they run alone. This performance degradation is called the

co-run degradation. When a job i co-runs with the jobs in a

job set S, the co-run degradation of job i can be formally

defined as Eq. 1, where cti is the computation time when job

i runs alone, S is a set of jobs and cti,S is the computation

time when job i co-runs with the set of jobs in S.

di,S =
cti,S − cti

cti
(1)

In the co-scheduling problem considered in [19], a set P
of n serial jobs are allocated to multiple identical u-core

processors so that each core is allocated with one job. m
denotes the number of u-core processors needed, which can

be calculated as n
u (if n cannot be divided by u, we can simply

add (u−n mod u) imaginary jobs which have no performance

degradation with any other jobs). The objective of the co-

scheduling problem is to find the optimal way to partition n
jobs into m u-cardinality sets, so that the sum of di,S in Eq.1

over all n jobs is minimized. This objective can be formalized

as the following IP problem shown in Eq. 2, where xi,Si
is

the decision variable of the IP and Si is a job set that co-runs

with job pi. The decision constraints of the IP problem are

shown in Eq.3 and Eq.4. Note that the number of all job sets

that may co-run with job pi (i.e., the number of all possible

Si) is
(
n−1
u−1

)
.

min

n∑
i=1

di,Si
xi,Si

(2)

xi,Si
=

{
1 if pi is co-scheduled with Si,

0 otherwise.
1 ≤ i ≤ n (3)

∑
allSi

xi,Si
= 1, 1 ≤ i ≤ n (4)

B. Co-scheduling a mix of serial and parallel jobs

In this section, Subsection II-B1 first constructs the IP

model for the Embarrassingly Parallel (PE) jobs. In a PE job,

there are no communications among its parallel processes. An

example of a PE job is parallel Monte Carlo simulation [26].

In such jobs, multiple slave processes run simultaneously to

perform the Monte Carlo simulations. Each slave process com-

pletes its part of the work without the need for communication.

Once its computation finishes it sends the result back to the

master process and halts. The master process then reduces the

final result (i.e., calculating the average) from received data.

In Subsection II-B2, we extend the IP model to co-schedule

the general parallel jobs that require inter-process communica-

tions during the job executions, which we call PC jobs (Parallel

jobs with Communications). An example of a PC job is a MPI

application for matrix multiplication.

In both types of parallel jobs, the finish time of a job is

determined by their slowest process in the job.
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1) IP model for PE jobs: Eq.2 cannot be used as the

objective for finding the optimal co-scheduling of parallel jobs.

This is because Eq.2 will sum up the degradation experienced

by each process of a parallel job. However, as explained above,

the finish time of a parallel job is determined by its slowest

process. In the case of the PE jobs, a bigger degradation of

a process indicates a longer execution time for that process.

Therefore, no matter how small degradation other processes

have, the execution flow in the parallel job has to wait until the

process with the biggest degradation finishes. Thus, the finish

time of a parallel job is determined by the biggest degradation

experienced by all of its processes, which is denoted by Eq.5.

Therefore, co-scheduling a mix of serial jobs and PE jobs can

be modelled as the following IP problem. The total degradation

should be calculated using Eq. 6, where n is the number of all

processes (a serial job has one process and a PE has multiple

processes), δj is a parallel job, P is the number of parallel

jobs, Si is the set of processes that may co-run with process

pi. The decision constraints of Eq.6 are the same as those for

the IP modelling for serial jobs, i.e., Eq.3 and Eq.4.

dδj = max
pi∈δj

di,Si
(5)

min(

P∑
j=1

(max
pi∈δj

(di,Si × xi,Si)) +
n−P∑
i=1

di,Si × xi,Si) (6)

The max operation in Eq 6 can be eliminated by introducing

an auxiliary variable yj for each parallel job δj . Each yj has

the following inequality relation with the original decision

variables.

for all pi ∈ δj , di,Si
xi,Si

≤ yj (7)

Therefore, the objective function in (6) is transformed to

min(
P∑

j=1

yj +
n−P∑
i=1

(di,Si
× xi,Si

)) (8)

2) IP model for PC jobs: In the case of the PC jobs,

the slowest process in a parallel job is determined by both

performance degradation and communication time. Therefore,

we define the communication-combined degradation, which

is expressed using Eq. 9, where ci,S is the communication

time taken by parallel process pi when pi co-runs with the

processes in Si. As with di,Si , ci,Si also varies with the

co-scheduling solutions. We can see from Eq. 9 that for all

processes in a parallel job, the one with the biggest sum of

performance degradation (in terms of the computation time)

and the communication has the greatest value of di,Si
, since

the computation time of all processes (i.e., cti) in a parallel job

is the same when a parallel job is evenly balanced. Therefore,

the greatest di,Si
of all processes in a parallel job should

be used as the communication-combined degradation for that

parallel job.

When the set of jobs to be co-scheduled includes both serial

jobs and PC jobs, we use Eq.9 to calculate di,Si for each

parallel process pi, and then we replace di,Si
in Eq.6 with that

calculated by Eq. 9 to formulate the objective of co-scheduling

a mix of serial and PC jobs.

di,Si =
cti,Si

− cti + ci,Si

cti
(9)

Whether Eq. 6 replaced with di,Si
calculated by Eq. 9 still

makes an IP problem depends on the form of ci,Si
. Next, we

first present the modelling of ci,Si , and then use an example

for illustration.

Assume that a parallel job has regular communication

patterns among its processes. ci,Si
can be modelled using Eq.

10 and 11, where γi is the number of the neighbouring pro-

cesses that process pi has corresponding to the decomposition

performed on the data set to be calculated by the parallel job,

αi(k) is the amount of data that pi needs to communicate

with its k-th neighbouring process, B is the bandwidth for

inter-processor communication (typically, the communication

bandwidth between the machines in a cluster is same), bi(k)
is pi’s k-th neighbouring process, and βi(k, Si) is 0 or 1 as

defined in Eq. 11. βi(k, Si) is 0 if bi(k) is in the job set Si

co-running with pi. Otherwise, βi(k, Si) is 1.

Essentially, Eq. 10 calculates the total amount of data that pi
needs to communicate, which is then divided by the bandwidth

B to obtain the communication time. βi(k, Si) in Eq. 10 is

further determined by Eq. 11. Note that pi’s communication

time can be determined by only examining which neighbour-

ing processes are not in the job set Si co-running with pi,
no matter which machines that these neighbouring processes

are scheduled to. Namely, ci,Si
can be calculated by only

knowing the information of the local machine where process

pi is located. Therefore, such a form of ci,Si
makes Eq. 9 still

be of an IP form that can solved by the existing IP solvers.

ci,Si
=

1

B

γi∑
k=1

(αi(k)× βi(k, Si)) (10)

βi(k, Si) =

{
0 if bi(k) ∈ Si

1 if bi(k) /∈ Si

(11)

We use an example as shown in Fig. 2 to illustrate the

calculation of ci,Si
. Fig. 2a represents a data set to be calcu-

lated on. Assume that a typical 2-dimensional decomposition

is performed on the data set, resulting in 9 subsets of data.

These 9 subsets of data are calculated by 9 processes in

parallel (e.g., using MPI). The arrows between the data subsets

in Fig. 2a represent the communication pattern between the

processes. Assume that the parallel job is labelled as δ1 and

the 9 processes in δ1 are labelled as p1, ..., p9. Also assume that

these 9 processes are scheduled on 2-core machines as shown

in Fig. 2b. Now consider process p5. It has intra-processor

communication with p6 and inter-processor communications

with p2, p4 and p8. Since the intra-processor communication

can occur simultaneously with inter-processor communica-

tion and the intra-processor communication is always faster

than the inter-processor communication, the communication

223222222222222222



P1 P2 P3 

P4 P5 P6 
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(a) An exemplar parallel job δ1 and its inter-process communication
pattern
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(b) A schedule of the parallel job δ1 and a serial job p10 on 2-core machines

Fig. 2: An illustrative example for modelling the communica-

tion time

time taken by process p5 in the schedule, i.e., c5,{p6}, is
1
B (α5(1)+α5(3)+α5(4)). Note that in typical 1D, 2D or 3D

decompositions, the data that a process has to communicate

with the neighbouring processes in the same dimension are

the same. In Fig. 2, for example, α5(1) = α5(3) and

α5(2) = α5(4).

III. A GRAPH-BASED METHOD FOR FINDING OPTIMAL

CO-SCHEDULING SOLUTIONS

This Section presents a graph-based method to find the

co-scheduling solutions. Subsection III-A proposes a co-
scheduling graph to model the co-scheduling problem. The

problem of finding the optimal co-scheduling solution for both

serial and parallel jobs can then be converted to the problem

of finding the shortest VALID path in the constructed graph.

In our previous work [18], we applied the A*-search algorithm

to find the optimal co-scheduling solution. However, it takes

the algorithm long time to find the optimal solution for the

problems of relatively large scale. Therefore, in this paper, a

heuristic A*-search algorithm is proposed (Subsection III-B)

to find the near-optimal solution with much higher efficiency.

A. The graph model

As formalized in Section II, the objective of solving the

co-scheduling problem for both serial and PC jobs is to

find a way to partition n jobs into m u-cardinality sets, so

that the total degradation of all jobs is minimized (note that

degradation refers to performance degradation defined in Eq.

1 and communication-combined degradation defined in Eq. 9

for serial jobs and parallel jobs, respectively). The number of

all possible u-cardinality sets is
(
n
u

)
. In the rest of this section,

a process refers to a serial job or a parallel process unless it

causes confusion.
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Fig. 3: The exemplar co-scheduling graph for co-scheduling 6

jobs on Dual-core machines; the list of numbers in each node

is the node ID; A number in a node ID is a job ID; The edges

of the same color form the possible co-scheduling solutions;

The number next to the node is the node weight, i.e., total

degradation of the jobs in the node.

In this paper, a graph is constructed, called the co-

scheduling graph, to model the co-scheduling problem. There

are
(
n
u

)
nodes in the graph and each node corresponds to a u-

cardinality set. Each node represents a u-core processor with

u processes assigned to it. The ID of a node consists of a list

of the IDs of the processes in the node. In the list, process

IDs are always placed in an ascending order. The weight of

a node is defined as the total degradation of the u processes

in the node. The nodes are organized into multiple levels in

the graph. The i-th level contains all nodes in which the ID

of the first process is i. Then the number of nodes in level

i is
(
n−i
u−1

)
since level i contains all combinations of u − 1

jobs from n − i jobs. In each level, the nodes are placed

in ascending order of their ID’s. A start node and an end
node are added as the first (level 0) and the last level of the

graph, respectively. The weights of the start and the end nodes

are both 0. The edges between the nodes are dynamically

established as the algorithm of finding the optimal solution

progresses. Such organization of the graph nodes will be used

to help optimize the co-scheduling algorithms proposed in this

paper. Figure 3 illustrates the case where 6 processes are co-

scheduled to 2-core processors. The figure also shows how to

code the nodes in the graph and how to organize the nodes

into different levels. Note that for the clarity we did not draw

all edges.

In the constructed co-scheduling graph, a path from the start

to the end node in the graph forms a co-scheduling solution

if the path does not contain duplicated jobs, which is called

a valid path. Finding the optimal co-scheduling solution is
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equivalent to finding the shortest valid path from the start to

the end node.

B. Heuristic A*-search Algorithm

In this section, a Heuristic A*-search (HA*) method is

proposed to trim the searching in the co-scheduling graph. The

resulting search space is much smaller than the original one

and therefore the co-scheduling solution, which is sub-optimal,

can be computed more efficiently by order of magnitude than

the A*-search algorithm in our previous work [18], which aims

to find the optimal solution (we now call it OA*).

The principle of trimming the co-scheduling graph is based

on the following insight. We re-arrange the nodes in each level

of the co-scheduling graph in the ascending order of node

weight. We then apply OA* to find the shortest path from the

sorted graph. For each node on the shortest path, we record its

rank in the graph level that the node is in (the i-th node in a

level has the rank of i). Assume that a node on the computed

shortest path has the rank of i in its level. We also record how

many invalid nodes the algorithm has to skip from rank 1 to

rank i in the level before locating this valid node of rank i.
Assume the number of invalid nodes is j. Then (i-j) is the

number of nodes that the algorithm has attempted in the level

before reaching the node that is on the shortest path. We call

this number, i − j, the effective rank of the node of rank i
in the level. We calculate the effective rank for every node

on the shortest path and obtain the maximum of them, which

we denote by MER (Maximum Effective Rank of the shortest

path). If we had known the value of MER, assuming it is k,

before we apply the OA*-search algorithm, we can instruct

the algorithm to only attempt the first k valid nodes in each

level and the algorithm will still be able to find the shortest

path of the algorithm.

Given the above insight, we designed the following bench-

marking experiment to conduct the statistical analysis for the

value of MER. The numbers of jobs we used are 24, 32,

48 and 56 jobs. For each job batch and u-core machines,

we randomly generated K different cache misses for a job

(the cache miss rate of a job is randomly selected from the

range of [15%, 75%]) and construct K different co-scheduling

graphs. We then used OA* to find the shortest path of each

graph and record the value of MER. Figure 4a and 4b depict

the Cumulative Distribution Functions (CDF) of MER with

1000 graphs (i.e., K=1000) on Quad-core machines and 8-core

machines, respectively.

As shown in Figure 4a, when the number of jobs is 24,

the value of MER is no more than 6 for 98.1% of graphs.

Similarly, when the numbers of jobs are 32, 48 and 56, the

values of MER are no more than 8, 12 and 14 for 99.8%,

99.6% and 98.7% of graphs, respectively. The corresponding

figures for the case where the jobs are co-scheduled on 8-core

machines are shown in Figure 4b.

From these benchmarking results, we find that we can use

the function MER = n
u , where n is the number of jobs and

u is the number of cores in a machine, to predict the value of

MER. With this MER function, the actual value of MER will
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Fig. 4: Cumulative Distribution Function (CDF) of MER

be no more than the predicted one in almost all cases. The

reason why such a MER function generates very good results

can be explained in principle as follows, although we found

that it was difficult to give rigorous proof. We know that the

nodes with too big weights has less chance to appear on the

shortest path. Therefore, when OA* attempts the nodes in a

level to expand the current path, if a node’s effective rank is

more than n
u , which is the number of machines that is needed

to co-run this batch of jobs, the node will not be selected even

if a poor greedy algorithm is used to map the node to one of

the n
u machines.

Based on the above statistical analysis, we adjust the co-

scheduling graph and trim the searching for the shortest path

in the following way. In each level of the graph, the nodes are

arranged in the ascending order of node weight. When OA*

searches for the shortest path, it only attempts n
u valid nodes

in each level to expand the current path, if n
u is less than

the number of valid nodes in the level. This way, the graph

scale and consequently the number of operations performed

by the algorithm are reduced by order of magnitude. We call

the A*-search algorithm operating in this fashion the Heuristic
A*-search (HA*) algorithm.

It is difficult to analyze the time complexity of the A*-

search algorithm since it depends on the design of the h(v)
function. However, the time complexity of our A*-search

algorithm mainly depends on how many valid nodes the

algorithm have to attempt when extending a current path

to a new graph level, which can be used to analyze the

complexity difference between OA* and HA*. Assume that

OA* is searching for co-scheduling solutions of n jobs on
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u-core machines and that the current path includes k nodes.

When OA* extends the current path to a new level, the number

of valid nodes that OA* may have to attempt in the new level

can be calculated by
(
(n−1)−k·u

u−1

)
, since all nodes that contain

the jobs that appear in the current path are not valid nodes.

Under the same settings, the number of valid nodes that HA*

needs to attempt is only n
u . The following example is given to

show the complexity difference between these two methods.

When n is 100, u is 4 and k is 2,
(
(n−1)−k·u

u−1

)
is 121485 while

n
u is 25. The value of

(
(n−1)−k·u

u−1

)
becomes less than 25, only

when k is bigger than 23 (The value of
(
(n−1)−k·u

u−1

)
is 35

when k is 23). But the biggest value of k is 24 since there

are total 25 nodes in a complete path when co-scheduling 100

jobs on Quad-core machines. This means that in almost all

cases (except the last graph level)
(
(n−1)−k·u

u−1

)
is bigger than

n
u by orders of magnitude. This is the reason why HA* is

much more efficient than OA*, which is also supported by the

experimental results presented in Section IV.

IV. EVALUATION

This section evaluates the effectiveness and the efficiency

of three co-scheduling methods proposed in this work: the IP-

based method (IP), the OA*-search algorithm (OA*) and the

heuristic A*-search algorithm (HA*).

We conducted the experiments with data collected from real

jobs. The serial jobs are taken from the NASA benchmark

suit NPB3.3-SER [9] and SPEC CPU 2000 [10]. NPB3.3-

SER has 10 serial programs and each program has 5 different

problem sizes. The problem size used in the experiments

is size C. The PC jobs are selected from these ten MPI

applications in the NPB3.3-MPI benchmark suite. As for PE

jobs, 5 embarrassingly parallel programs are used: PI [4],

Mandelbrot Set(MMS) [2], RandomAccess(RA) from HPCC

benchmark [1], EP from NPB-MPI [9] and Markov Chain

Monte Carlo for Bayesian inference (MCM) [22]. In all these 5

embarrassingly parallel programs, multiple slave processes are

used to perform calculations in parallel and a master process

reduces the final result after it gathers the partial results from

all slaves. These set of parallel programs are selected because

they contain both computation-intensive programs (e.g, MMS

and PI) and memory-intensive programs (e.g, RA).

Three types of machines, Dual-core, Quad-core and 8-core

machines, are used to run the benchmarking programs. A dual-

core machine has an Intel Core 2 Dual processor and each

core has a dedicated 32KB L1 data cache and a 4MB 16-

way L2 cache shared by the two cores. A Quad-core machine

has an Intel Core i7 2600 processor and each core has a

dedicated 32KB L1 cache and a dedicated 256KB L2 cache.

A further 8MB 16-way L3 cache is shared by the four cores.

The processor in the 8-core machine is Intel Xeon E5-2450L.

Each core has a dedicated 32KB L1 cache and a dedicated

256KB L2 cache, and a 16-way 20MB L3 cache is shared by

8 cores. The interconnect network is the 10 Gigabit Ethernet.

The method presented in [25] is used to estimate the co-

run execution times of the programs. CPU Time denotes the

computation time of a job. According to [25], CPU Time is

calculated using Eq. 12.

CPU Time = (CPU Clock Cycle+

Memory Stall Cycle)× Clock Cycle T ime
(12)

Memory Stall Cycle in Eq. 12 is computed by Eq. 13,

where Number of Misses is the number of cache misses.

Memory Stall Cycle = Number of Misses×
Miss Penalty

(13)

The values of CPU Clock Cycle and

Number of Misses for a single-run program can be

obtained using perf [5] in Linux. Then the value of

Memory Stall Cycle for a single-run program can be

obtained by Eq. 13. CPU Time for a single-run program

can also be obtained by perf.
The value of CPU Time for a co-run program can be

estimated in the following way. We use the gcc-slo compiler

suite [11] to generate the SDP (Stack Distance Profile) for each

benchmarking program offline, and then apply the SDC (Stack

Distance Competition) prediction model in [14] to predicate

Number of Misses for the co-run programs. Then Eq. 13

and Eq. 12 are used to estimate Memory Stall Cycle and

CPU Time for the co-run programs.

With the single-run and co-run values of CPU Time, Eq.

1 is used to compute the performance degradation.

In order to obtain the communication time of a parallel

process when it is scheduled to co-run with a set of processes,

i.e., ci,Si
in Eq. 10, we examined the source codes of the

benchmarking MPI programs used for the experiments and

obtained the amount of data that the process needs to com-

municate with each of its neighbouring processes (i.e., αi(k)
in Eq. 10). And then Eq. 10 and Eq. 11 are used to calculate

ci,Si .

A. Comparing the effectiveness of IP and OA*

This section reports the results for validating the optimality

of IP proposed in this paper. It has been shown that the OA*

constructed in [18] produces the optimal solution. Therefore,

we first compare IP with the OA* algorithm in [18] for co-

scheduling serial jobs on Dual-core and Quad-core machines.

In our experiments, we employ the IP solver, CPLEX [7], to

compute the optimal co-schedules. The experiments use all

10 serial benchmark programs from the NPB-SER suite and 6

serial programs (applu, art, ammp, equake, galgel and vpr) are

selected from SPEC CPU 2000. The experimental results are

presented in Table I. We also compare OA* and the IP model

constructed in this paper for co-scheduling a mix of serial and

parallel programs. The results are listed in Table II. In these

experiments, two MPI applications (i.e., MG-Par and LU-Par)

are selected from the NPB3.3-MPI and combined with serial

programs chosen from NPE-SER and SPEC CPU 2000. The

processes of each parallel application varies from 2 to 4. The
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detailed combinations of serial and parallel programs are listed

below:

• In the case of 8 processes, MG-Par and LU-Par are

combined with applu, art, equake and vpr.

• In the case of 12 processes, MG-Par and LU-Par are

combined with applu, art, ammp, equake, galgel and vpr.

• In the case of 16 processes, MG-Par and LU-Par are

combined with BT, IS, applu, art, ammp, equake, galgel

and vpr.

TABLE I: Comparison between OA* and IP for serial jobs

Number of Jobs Average Degradation
Dual Core Quad Core
IP OA* IP OA*

8 0.12 0.12 0.34 0.34
12 0.22 0.22 0.36 0.36
16 0.13 0.13 0.27 0.27

TABLE II: Comparison of IP and OA* for serial and parallel

jobs

Number of Jobs Average Degradation
Dual Core Quad Core
IP OA* IP OA*

8 0.07 0.07 0.098 0.098
12 0.05 0.05 0.074 0.74
16 0.12 0.12 0.15 0.15

As can be seen from Table I and II, OA* achieves the same

performance degradation as that by the IP model. These results

verify the optimality of OA*.

B. Efficiency of IP and OA*

This subsection investigates the efficiency of IP and OA*,

i.e., the time spent by the methods in finding the optimal co-

scheduling solutions. We used various IP solvers, CPLEX [7],

CBC [6], SCIP [3] and GLPK [8], to solve the same IP model.

The results are shown in Table III. As can be observed from

Table III, CPLEX is the fastest IP solver. Note that when the

number of processes are 16, the solving times by SCIP are all

around 1000 seconds. This is only because the SCIP solver

gave up the searching after 1000 seconds, deeming that it

cannot find the final solution. It can be seen that the IP solvers

are not efficient in solving the optimal co-scheduling problem.

In fact, our records show that none of these IP solvers can

manage to solve the IP model for more than 24 processes. Our

previous work [34] proposes the O-SVP algorithm to compute

the co-scheduling solutions for parallel and serial jobs. We

also used O-SVP to find the co-scheduling solutions in the

experiments and present the solving times in Table III.

It can be seen that OA* finds the optimal solution much

more efficiently than O-SVP and that the time gap becomes

increasingly bigger as the number of jobs increases.

C. Heuristic A*-search algorithm

The experiments presented in this subsection aim to verify

the effectiveness of HA*. We conducted the experiments to

compare the solutions obtained by HA* and those by OA*.

We also compared HA* with the heuristic algorithm (denoted

by PG) developed in [19] for finding co-scheduling solutions.

TABLE III: Efficiency of different methods on Quad-core

machines

Number of Jobs Solving time (seconds)
CPLEX CBC SCIP GLPK OA*

8(se) 0.086 0.19 0.28 0.049 0.004
8(pe) 0.33 0.26 0.21 0.041 0.005
8(pc) 0.48 0.45 0.24 0.038 0.006

12(se) 3.44 72.74 51.09 51.58 0.15
12(pe) 0.998 13.56 30.32 15.97 0.24
12(pc) 2.23 21.09 29.82 16.42 0.2

16(se) 33.4 704 1000 33042 0.63
16(pe) 32.52 303 1001 1231 1.52
16(pc) 11.76 313 1001 1170 1.63

PG first calculates the politeness of each job based on the

degradation that the job causes when it co-runs with other

jobs, and then applies the greedy algorithm to co-schedule

“polite” jobs with “impolite” jobs.

In the experiments, we choose 12 applications from

NPB3.3-SER and SPEC CPU 2000 (BT, CG, EP, FT, IS,

LU, MG, SP, UA, DC, art and ammp) and co-schedule them

on Quad-core machines using OA*, HA* and PG. We also

conducted the similar experiments on 8-core machines, in

which 16 applications were used from NPB3.3-SER and SPEC

CPU 2000 (BT, CG, EP, FT, IS, LU, MG, SP, UA, DC,

art, ammp, applu, equake, galgel and vpr). The experimental

results for Quad-core and 8-core machines are presented in

Figure 5 and Figure 6, respectively. Note that the algorithms

aim to optimize the average performance degradation of the

batch of jobs, which is labelled by “AVG”, not to optimize

performance degradation of each individual job.

BT CG EP FT IS LU MG SP UA DC art ammp AVG
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Fig. 5: Comparing performance degradations of benchmarking

applications on Quad-core machines under OA*, HA* and PG

In Figure 5 and 6, the average performance degradation

obtained by HA* is worse than OA* only by 9.8% and 4.6%

on Quad-core and 8-core machines, respectively, while HA*

outperforms PG by 12.6% and 14.6% on Quad-core and 8-core

machines, respectively. These results show the effectiveness

of the heuristic approach, i.e., using the MER function, in

HA* and that the heuristic method can deliver the near-optimal

performance.

We also used the synthetic jobs to conduct larger-scale

experiments and compare HA* and PG. The synthetic jobs

are generated in the same way as in Figure 4a and 4b. The

results on Quad-core and 8-core machines are presented in
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Fig. 6: Comparing performance degradations of benchmarking

applications on 8-core machines under OA*, HA* and PG

Figure 7a and 7b, respectively. It can be seen from the tables

that HA* outperforms PG in all cases, by 20%-25% on Quad-

core machines and 16%-18% on 8-core machines).
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Fig. 7: Comparing the degradation under HA* and PG algo-

rithms

We further investigated the scalability of HA* in terms of

the time spent in finding the co-scheduling solutions. Figure

9 shows the scalability for co-scheduling synthetic jobs on

Quad-core and 8-core machines. The synthetic jobs in this

figure are generated in the same way as in Figure 4a and 4b.

By comparing the scalability curve for Quad-core machines

in Figure 9 with that in Figure 8b, it can be seen that HA*

performs much more efficiently than OA*. Another interesting

observation from Figure 9 is that HA* spends much less

time to find solutions on 8-core machines than on Quad-core

machines. This is because we use the MER function, n
u , to

trim the searching in HA*. When there are more cores in

a machine (consequently, less machines are needed to run

the same batch of jobs), less number of valid nodes will

be examined in each level of the co-scheduling graph and

therefore less time is taken by HA*. The scalability trend of

OA* is different as shown in Figure 8a and 8b. In OA*, when

the jobs are scheduled on machines with more cores, the co-

scheduling graph becomes bigger with more graph nodes. OA*

will examine all nodes in the graph in any case. Therefore,

the solving time of OA* increases as the number of cores in

a machine increases.

Figure 8a and 8b show the scalability of OA* on Dual-

core and Quad-core machines, respectively, as the number

of serial processes increases. The scalability trend of OA*

is different as shown in Figure 8a and 8b. In OA*, when

the jobs are scheduled on machines with more cores, the co-

scheduling graph becomes bigger with more graph nodes. OA*

will examine all nodes in the graph in any case. Therefore,

the solving time of OA* increases as the number of cores in

a machine increases.
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Fig. 8: Scalability of OA*

V. RELATED WORK

This section first discusses the co-scheduling strategies

proposed in the literature. Similar to the work in [19], our

method needs to know the performance degradation of the

jobs when they co-run on a multi-core machine. Therefore,

48 144 240 336 432 528 624 720 816 912 1008 1208

0

50

100

150

200

250

300

Number of Jobs

T
im

e(
se

co
n
d
s)

Quad-Core

8-Core

Fig. 9: Scalability of HA* on Quad-core and 8-core machines
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this section also presents the methods that can acquire the

information of performance degradation.

A. Co-scheduling strategies

Many co-scheduling schemes have been proposed to reduce

the shared cache contention in a multi-core processor. Differ-

ent metrics can be used to indicate the resource contention,

such as Cache Miss Rate (CMR), overuse of memory band-

width, and performance degradation of co-running jobs. These

schemes fall into the following two classes.

The first class of co-scheduling schemes aims at improving

the runtime schedulers and providing online co-scheduling

solutions. The work in [13] developed the co-schedulers that

reduce the cache miss rate of co-running jobs. The funda-

mental idea of these co-schedulers is to uniformly distribute

the jobs with high cache requirements across the processors.

Wang et al. [30] demonstrated that the cache contention can

be reduced by rearranging the scheduling order of the tasks.

The center idea of their algorithm is to distinguish the jobs

with different cache requirements, and change the scheduling

order so as to schedule the jobs with high cache requirements

on the same chip as the jobs with low cache requirements.

In doing so, the contention for the shared cache can be

reduced. Recent studies on resource contention in multi-core

processors have pointed out that the contention may appear

along the entire memory hierarchy. To address this problem,

Feliu et al. [17] proposed an algorithm to tackle the problem

of overusing memory bandwidth. The work measures the

available bandwidth at each level of memory hierarchy and

balances the bandwidth utilization along the job execution

times of the jobs.

The work in [19] defined the performance degradation of the

co-running jobs as the metric to measure the level of resource

contention. A greedy algorithm was developed in [19] to find

the co-scheduling solution efficiently. In the greedy algorithm,

the polite and impolite jobs were defined. The strategy was

then to assign friendly jobs with unfriendly jobs. However,

the work only considers serial jobs.

The second class of co-scheduling schemes focuses on

providing the basis for conducting performance analysis. It

mainly aims to find the optimal co-scheduling performance

offline, in order to providing a performance target for other

co-scheduling systems. The extensive research is conducted

in [19] to find the co-scheduling solutions. The work models

the co-scheduling problem for serial jobs as an Integer Pro-

gramming (IP) problem, and then uses the existing IP solver

to find the optimal co-scheduling solution (it also proposes a

set of heuristics-based algorithms to find the near optimal co-

scheduling). Although the work in [19] can obtain the optimal

co-scheduling solution, their approach is only for serial jobs.

In this paper, two new methods, an IP-based method and

a graph-based method, are developed to find the optimal co-

scheduling solution offline for both serial and parallel jobs.

Furthermore, based on the co-scheduling graph constructed for

representing the co-scheduling problem, a heuristic method is

also proposed in this paper to find the near-optimal solutions

with much less time.

Our previous work [34] [18] also studied the co-scheduling

problem. This work differs from our previous work in the

following aspects. First, this paper models the co-scheduling

problem as an Integer Program (IP). This way, the existing

IP solvers can be used to find the co-scheduling solutions.

Second, the work in [34] proposed an O-SVP algorithm, while

the work in [18] designed the OA* algorithm. Both algorithms

aim to find the optimal co-scheduling solutions. Due to the

nature of the problem, the algorithm can only be used to find

the solution for the problems with relatively small scale. When

the number of jobs becomes big, the solving time will become

very long. In this work, a Heuristic A*-search (HA*) algorithm

is proposed. The algorithm is able to find the co-scheduling

solution much more efficiently. In terms of solution quality,

HA* is only worse than OA* by a very small margin (less than

10% shown in our experiments) and is better than the existing

heuristic method presented for the co-scheduling problem [19].

B. Acquiring the information of performance degradation

When a job co-runs with a set of other jobs, its performance

degradation can be obtained through prediction [14] or offline

profiling [29]. Predicting performance degradation has been

well studied in the literature [20], [33]. One of the best-

known methods is Stack Distance Competition (SDC) [14].

This method uses the Stack Distance Profile (SDP) to record

the hits and misses of each cache line when each process is

running alone. The SDC model tries to construct a new SDP

that merges the separate SDPs of individual processes that

are to be co-run together. This model relies on the intuition

that a process that reuses its cache lines more frequently will

occupy more cache space than other processes. Based on this,

the SDC model examines the cache hit count of each process’s

stack distance position. For each position, the process with

the highest cache hit count is selected and copied into the

merged profile. After the last position, the effective cache

space for each process is computed based on the number of

stack distance counters in the merged profile.

The offline profiling can obtain more accurate degradation

information, although it is more time consuming. Since the

goal of this paper is to find the optimal co-scheduling solutions

offline, this method is also applicable in our work.

VI. CONCLUSION AND FUTURE WORK

This paper explores the problem of finding the co-

scheduling solutions for a mix of serial and parallel jobs

on multi-core processors. The co-scheduling problem is first

modelled as an IP problem and then the existing IP solvers

can be used to find the optimal co-scheduling solutions. In

this paper, the co-scheduling problem is also modelled as a

co-scheduling graph and the problem of finding the optimal

co-scheduling solution can then converted into the problem of

finding the shortest valid path in the co-scheduling graph. A

heuristic A*-search algorithm is then proposed to find the near-

optimal solutions efficiently. Future work has been planned
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in the following two folds. 1) It is possible to parallelize

the proposed co-scheduling methods to further speedup the

solving process. We plan to investigate the parallel paradigm

suitable for this problem and design the suitable parallelization

strategies. 2) We plan to extend our co-scheduling methods

to solve the optimal mapping of virtual machines (VM) on

physical machines. The main extension is to allow the VM

migrations between physical machines.
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