
Chemical Reaction Optimization for Heterogeneous Computing Environments

Kenli Li, Zhimin Zhang, Yuming Xu

College of Information Science and Engineering
Hunan University

Changsha, Hunan, China
Email: lkl510@263.net

121862525@qq.com
xxl1205@163.com

Bo Gao, Ligang He

Department of Computer Science
University of Warwick

United Kingdom
Email: bogao@dcs.warwick.ac.uk

liganghe@gmail.com

Abstract—Task scheduling has been proven to be NP-hard
problem [1] and we can usually approximate the best solutions
with some classical algorithm, such as Heterogeneous Earliest
Finish Time(HEFT), Genetic Algorithm. However, the huge
types of scheduling problems and the small number of generally
acknowledged methods mean that more methods are needed. In
this paper, we propose a new method to schedule the execution
of a group of dependent tasks for heterogeneous computing
environments. The algorithm consists of two elements: An
intelligent approach to assign the execution orders of tasks
by task level, and an allocation algorithm based on chemical-
reaction-inspired metaheuristic called Chemical Reaction Op-
timization (CRO) to map processors to tasks. The experiments
show that the CRO-based algorithm performs consistently
better than HEFT and Critical Path On a Processor (CPOP)
without incurring much computational cost. Multiple runs of
the algorithm can further improve the search result.

Keywords-task scheduling; chemical reaction optimization;
DAG; heterogeneous computing;

I. INTRODUCTION

Scheduling a group of dependent tasks on parallel proces-

sors is an intensively studied problem in parallel computing.

By decomposing a computation into smaller tasks and exe-

cuting the tasks on multiple processors, we can potentially

reduce the total execution time of the computation.

Traditional scheduling problems assume a homogeneous

computing environment in which all processors have the

same processing abilities and they are fully connected.

Recent studies have been diverted to scheduling for het-

erogeneous computing environments in which the execution

time of a task may vary among different processors, not

all processors are directly connected, and the bandwidth

of communication links connecting processors may also be

different. In addition, some scheduling problems allow a task

to be executed on multiple processors, while other problems

restrict the execution of a task on only one processor [2].

The search for an optimal solution to the problem of

multi-processor scheduling has been proven to be NP-hard

except for some special cases [4]. Numerous approaches

have been developed to solve the problem for heterogeneous

computing environments. These approaches can be mainly

classified into two categories: Deterministic approaches and

non-deterministic approaches.

Deterministic approaches attempt to exploit the heuristics

extracted from the nature of the problem in guiding the

search for a solution. (e.g. HEFT [3] [11] and [3] [11] ,etc.).

They are efficient algorithms as the search is narrowed down

to a very small portion of the solution space. However, the

performance of these algorithms is heavily dependent on the

effectiveness of the heuristics. Therefore, they are not likely

to produce consistent results on a wide range of problems.

Contrary to deterministic algorithms, non-deterministic

algorithms incorporate a combinatoric process in the search

for solutions. They typically require sufficient sampling of

candidate solutions in the search space and have shown ro-

bust performance on a variety of scheduling problems. Since

Genetic Algorithms [5], [15], [12], Simulated annealing [6],

[7], and Tabu [10] search have been successfully applied to

task scheduling, we propose a new method based on CRO

to solve task scheduling problems.

CRO is a (variable) population-based general-purpose

optimization metaheuristic [1], [14], [8], [9]. It mimics the

interactions of molecules driving towards the minimum state

of free energy (i.e. the most stable state). The manipulated

agents are molecules, each of which has a molecular struc-

ture, potential energy (PE), kinetic energy (KE), and some

other optional attributes. The molecular structure and PE

corresponds to a solution of a given problem and its objective

function value, respectively. KE represents the tolerance

of a molecule getting a worse solution than the existing

one, thus allowing CRO to escape from local optimum

solutions. Imagine that we have a set of molecules in

a closed container. They move and collide either on the

walls of the container or with each other. Each collision

results in one of the four types of elementary reactions,

including on-wall ineffective collision, decomposition, inter-

molecular ineffective collision, and synthesis. They have

different characteristics and extent of change to the solutions.

With the conservation of energy, the solutions change from

high to low energy states and we output the molecular

structure with the lowest found PE as the best solution.

2012 10th IEEE International Symposium on Parallel and Distributed Processing with Applications

978-0-7695-4701-5/12 $26.00 © 2012 IEEE

DOI 10.1109/ISPA.2012.11

17

Figure 1. A DAG consists of 10 tasks.

The rest of this paper is organized as follows. We

formulate the problem in Section II. In Section III, we

describe the proposed CRO-based algorithm. Section IV

gives the simulation results, compared with HEFT and CPOP

evolutionary algorithms. We conclude this paper and suggest

possible future work in Section V.

II. PROBLEM FORMULATION

A. System Model

The target system used in this work consists of a set

P of p heterogeneous processors/machines that are fully

interconnected with the same communication links (i.e.,with

the same bandwidths), but they have different processing

abilities. In addition, each task can only be executed on one

processor. The communication time between two dependent

tasks should be taken into account if they are assigned to

different processors. We also assume a static computing

model in which the dependence relations and the execution

times of tasks are known a prior and do not change over the

course of scheduling and task execution.

B. Task Model

The scheduling problem is typically given by a group

of dependent tasks along with a group of interconnected

processors. The data dependency and execution precedence

among tasks can be described with a directed acyclic graph

(DAG). In general, a DAG can be defined as a four tuple

G = (V,E,C,W) , which V is the set of vertex. it

represents tasks partitioned from an application. An edge

e(i, j) ∈ E between task ti and task tj represents inter task

communication. In other words, the output of task ti has

to be transmitted to task tj in order for task tj to start its

execution. A task with no predecessors is called an entry

task, tentry, whereas an exit task, texit, is one that does

not have any successors. The weight on an edge, denoted

as c(i, j) ∈ C represents the communication cost between

two tasks, ti and tj . However, a communication cost is only

required when two tasks are assigned to different processors.

it means the communication cost can be ignored when tasks

are assigned to the same processor. The weight on a task ti
is denoted as wi ∈ W represents the computation cost of

the task. In addition, the actual start and finish times of a

task ti on a processor pk, are denoted as AST(ti, pk) and

AFT(ti, pk).

Fig. 1 shows an example DAG that contains ten tasks, t1
to t10. The arrows represent data dependencies among tasks.

Two tasks are dependent if the execution of one task relies

on the execution result of the other. The numbers represent

the communication times needed to transfer data between

two dependent tasks. Table I lists the execution times of

each task on three processors, p1, p2 and p3. Fig. 2 shows

an execution schedule of tasks with a total execution time

of 93 (also known as makespan).

C. Scheduling Model

The task scheduling problem in this study is the process

of allocating a set T of t tasks to a set P of p processors

without violating precedence constraints-aiming to minimize

makespan as low as possible. Through the description above,

we can define the makespan as M = max{AFT (texit)}
after the scheduling of t tasks in a task graph G is completed.

Meanwhile we can define a binary function F (T, P) = max
{AFT (texit)}, then we can get the objective function as

follows:

f(t) = min(F (Ti, Pj)), Ti ∈ T, Pj ∈ P (1)

Table I
THE COMPUTATION COSTS OF TEN TASKS IN FIG. 1 ON THREE

PROCESSOR, P1 , P2 , P3 .

ti P1 P2 P3

t1 11 13 9
t2 10 15 11
t3 9 12 14
t4 11 16 10
t5 15 11 19
t6 12 9 5
t7 10 14 13
t8 11 15 10
t9 14 16 9
t10 13 19 18

Figure 2. A schedule for Fig. 1, and the makespan is 93.

18

III. ALGORITHM DESIGN

For a given task sequence Ti ∈ T , once the processor

of every element in Ti is decided, then we can get the

makespan. In this paper, we use an intelligent approach

to get a set T of the task topologies in a DAG without

violating precedence constraints. For each task topology

sequence Ti ∈ T , CRO is implemented for searching a better

processors allocation. Meanwhile, we record the smaller

makespan with the corresponding task topology sequence

and processors mapping.

A. An Intelligent Algorithm for Task Topology Sequences

The implement of the tasks in a DAG should be met by

the predecessor constraints, that means a task is ready if it

has no predecessor or all its predecessor tasks are already

scheduled. While a task priority can be also expressed by

its level. We simply think that a task owns a higher priority

if it has more descendants, so the task level is used. The

task level can be calculated recursively with the following

equation:

IL(ti) =

{
0, ti = tentry

max(IL(tj)) + 1, tj ∈ pred(ti) (2)

A task that does not have any predecessor receives an

level of zero, while any other task level is calculated by the

maximum value of its predecessors’ plus one. The level of

a task is independent of the processors to which the task

and all its predecessor tasks are assigned. Therefore, the

level can be calculated before processors mapping. Table II

shows the task levels in Fig. 1.

As shown above, the lower a task level is, the higher pri-

orities it owns. So we can get the set T with some topologies

of tasks ordered by IL(ti) up, and these topologies can be

easily proved to meet the predecessor constraints. Table II

is also a reasonable topology sequence. Note that the tasks

with the same level, we consider them as the same priority

and they can be exchanged randomly to get new topology

structure. Fig. 3 is an example for ten tasks in Fig. 1 to get

a new topology sequence.

B. CRO for Processors Mapping and Solution Representa-
tion

After getting the set T , for each Ti ∈ T , we use

CRO-based algorithm to perform processors mapping, as-

sign one of the available processors to the execution of

each task. so we can model a one-dimensional vector

w = {pw0, pw1, . . . , pwn} as a solution, and the solution

Table II
THE TASK LEVEL FOR FIG. 1.

ti t1 t2 t3 t4 t5 t6 t7 t8 t9 t10
IL 0 1 1 1 1 1 2 2 2 3

Figure 3. An example of getting new topology through task level.

Table III
THE ENCODING OF SOLUTION FOR FIG. 1. EACH INTEGER REPRESENTS

THE PROCESSOR THAT A TASK IS ASSIGNED TO.

3 3 1 3 2 2 1 3 2 3

of the CRO is encoded with a linear list of integers, with

each integer representing the processor to which a task

is assigned. Suppose there are t topologies, n tasks and

m available processors. The value of each integer in the

solution ranges from 1 to m, and there are n integers in each

solution. The search space of a CRO, therefore, is t×mn.

Table. III shows the corresponding CRO individual to the

schedule in Fig. 2.

C. CRO Elementary Reaction Operators

We are going to describe the operators corresponding to

the four elementary reactions of CRO. They all operate on

the vector representation of solutions only. In the following,

we denote a solution in vector form with w.

1) On-wall Ineffective Collision: In this elementary reac-

tion, a molecule hits the wall of the container. There is little

perturbation to the molecule, and thus, a mechanism with a

small change to the solution (corresponding to the molecule)

can be adopted. In this work, we get a new solution w
′

from

an existing one w by changing two items of w randomly.

Fig. 4 is a simple example,

2) Decomposition: One molecule w tries to split into two,

w
′
1 and w

′
2. The resultant molecules have great perturbations

from the original one. Therefore, w
′
1 and w

′
2 are quite

different from w. To do this, we select a item pwi from

w randomly as the decomposition-point (DP). the left part

of DP is used for the left of w
′
1 and we generate the right

of w
′
1 randomly. At this point, w

′
1 can be obtained. Also,

Figure 4. An example for on-wall ineffective collision reaction.

19

Figure 5. An example for one molecule decomposition.

���

�����

���

�����

1�

2�

1'�

2'�

Figure 6. An example for two molecule synthesis.

at the same way, we generate the left of w
′
2 randomly, and

combine the right part of DP as the right of w
′
2 . This seems

to place search ”seeds” in two new and different regions of

the solution space and thus increases the exploration ability

of CRO. Fig. 5 is a simple example,

3) Inter-molecular Ineffective Collision: Two molecules,

w1 and w2, collide with each other. Two new solutions, w
′
1

and w
′
2, are produced by adding small perturbations to w1

and w2, respectively. To do this, we apply the mechanism

used for the on-wall ineffective collision to both w1 and w2

separately.

4) Synthesis: This tries to combine two molecule w1 and

w2 into a new one w
′
. w

′
should be quite different from w1

and w2 when compared with the ineffective collisions. To do

this, we just take a simple way to avoid more computation.

Firstly, a random integer is generated and is used as position

in w1 and w2. Then combine left of w1 with right of w2 to

get new molecule w
′
1, at the same time, w1’s right and w2’s

left are connected to obtain new molecule w
′
2. At last, the

solution with less makespan between w
′
1 and w

′
2 is selected

as w
′
. An example as Fig. 6,

D. Algorithm Outline

We basically follow the design framework described in

[1] to develop a CRO-based algorithm to solve heteroge-

neous computing environments. The whole process consists

of two elements: An intelligent approach to search some

task topologies through task level, and implementing CRO

metaheuristic method to search better processors mapping

for each task topology. Firstly, we compute the level of

each task, and order them by level up. Then two or more

tasks with the same level are exchanged randomly to get

new topology sequence while the loop number doesn’t

reach preset value, TopoSize. So there is TopoSize task

topologies in all. Here, TopoSize is related to the problem

scale, it means the value should get bigger with task number

increased. Next is the core of the algorithm, implementing

CRO searching of processors mapping for each topology.

The detail of CRO is as following:

In the initialization, we create the initial set of molecules

with size equal to PopSize and their molecular structures

are solutions in the way of one dimensional vector with

every item generated randomly, then the objective function

is evaluated and the corresponding values are the PE of

the molecules. The initial KE of every molecule is set

to the value of InitialKE . In each iteration, we decide

whether a uni-molecular or an inter-molecular reaction is

carried out in the iteration by comparing a random number

h ∈ [0, 1] with MoleColl. We select an appropriate subset

of molecules to undergo an elementary reaction determined

by the decomposition criterion or the synthesis criterion (de-

pending on whether the elementary reaction is uni-molecular

or inter-molecular). The iteration process continues until

the stopping criterion is satisfied. We output the best-so-far

solution in the final stage. For more information about CRO

algorithm, interested readers may refer to [1]. The pseudo

code of our method is as follows:

Algorithm 1 CRO for Scheduling.

Assign parameter values to PopSize, KELossRate,

MoleColl, InitialKE, α, β, TopoSize, minSolution
For each task ti do

Calculate its level IL(ti)
end For

Order tasks by task level up

set Iteration=0, minSolution=DBL MAX

while Iteration ≤ TopoSize do
Exchange two tasks with the same level randomly to

get new task topology sequence Ti

Implement CRO processors mapping for Ti, then get

the result croV alue
//Check for any new minimum solution

if croV alue ≤ minSolution then
set minSolution = croV alue, record Ti

end if
Iteration plus one

end while
Output the overall minimum solution, its function value

and corresponding topology sequence

Algorithm 2 Framework of CRO.

The detail about CRO, we follow the same framework to

the flow of CRO mentioned in [1].

IV. SIMULATION AND RESULTS

In this section, we will compare the performance of CRO

with HEFT and CPOP on random task graphs. According to

our extensive comparative evaluation study, the results show

that our algorithm performs better.

20

Table IV
THE CRO PARAMETER SETTING FOR VARYING CCR AND λ.

Parameter Value
PopSize 25

KELossRate 0.4
InitialKE 1000
MoleColl 0.4

α 40
β 10

A. Comparison Metrics and Experimental Design

The communication to computation ratio (CCR) is a mea-

sure that indicates whether a task graph is communication

intensive, computation intensive or moderate. For a given

task graph, it is computed by the average communication

cost divided by the average computation cost on a target

system [2].

Parallelism factor, λ [13]: The number of levels of the

application DAG is generated randomly, using a uniform

distribution with a mean value of
√
n
λ (n equal the number

of tasks), and then rounding it up to the nearest integer. The

width is generated using a uniform distribution with a mean

value of λ
√
n and then rounding it up to the nearest integer

[3]. A low λ leads to a DAG with a low parallelism degree.

In our experiment, we test 11 groups of task graphs

with different CCRs and parallel factors respectively. Both

the communication to computation ratio and parallel factor

have baseline settings of 1.0 and range between 0.4 and

2.4. To have fair comparisons of performance over various

optimization strategies, for each group, we generate 30 task

graphs randomly and some necessary information, such as

the implementing time of each task on processors and the

communication time between two tasks, then we calculate

its average value as the reference. Each graph is based on

4 processors and 20 tasks. For each run, we calculate the

speedup of the solution using the following equation:

Speedup =
serial execution time

makespan
(3)

which serial execution time is the sum of the average

computation times of all tasks. We use serial execution time

to approximately calculate the makespan of a schedule if

all tasks are serially assigned to the same processor. The

bigger the speedup is, the more effective the distribution of

task execution on parallel processors.

For each task graph, we run CRO 30 times, and calculate

both the average speedup of solutions and the speedup of

the best solution found in 30 runs.

The parameter values of CRO are given as Table. IV:

At the same time, we evaluate the performance of the

other references on the same 11 groups of task graphs and

calculate the average speedup of solutions for each group.

HEFT is a list scheduling algorithm and the priority of tasks

is based on their upward ranks. As a deterministic algorithm,

Figure 7. The comparisons of performance between CRO and HEFT,
HEFT NI(HEFT with no insertion), CPOP, CPOP NI(CPOP with no
insertion) on task graphs with varying CCRs.

Figure 8. The comparisons of performance between CRO and HEFT,
HEFT NI, CPOP, CPOP NI on task graphs with varying λs.

HEFT is run only once for each task graph. So is CPOP.

Finally, All the experiment are performed on a 2.81GHz

AMD dual-core Processor with 4.00GB of RAM.

B. Experimental Results and Analysis

Fig. 7 shows the comparison between the CRO-based

algorithm and the other references(HEFT, HEFT NI. CPOP,

CPOP NI) on task graphs with varying CCRs. The parallel

factor λ is fixed at 0.5. For CRO runs, we show the average

speedup of both the best solutions and the average solutions

in each test case. The results indicate that the speedup of

schedules decreases quickly as the CCR increases. The CRO

performs consistently better than the other algorithms in all

CCR cases. The gaps on the performance of these algorithms

are more noticeable in test cases with higher CCRs (e.g.,

with a ratio of 2.4). To schedule a task graph with a

CCR, proper assignment of dependent tasks on processors is

essential to avoid or reduce high communication costs. The

use of the CRO for processor mapping enables the algorithm

to search for a larger solution space than the others, so it

is more likely to find better mapping for tasks. Fig. 7 also

indicates that a better result can be found if we run the

algorithm sufficient number of times.

21

Table V
INFORMATION FOR VARIED TASK SIZE, THE PROCESSOR SIZE IS FIXED

AT 8

Task size Computation Topology Number Rate(K)
20 8000 15 1.0408e-013
25 13000 20 6.8821e-018
30 18000 20 2.9081e-022
35 20000 25 1.2326e-026
40 35000 35 9.2159e-031
45 60000 60 8.2652e-035
50 90000 60 3.7835e-039
55 110000 80 1.8816e-044

Fig. 8 shows the comparison between the CRO algorithm

and the others on task graphs with a varying λ. The CCR

is fixed at 1.0. For CRO runs, we also show the average

speedup of both the best solutions and the average solutions

in each test case. The results indicate that the speedup of

schedules increases quickly as λ increases. The CRO algo-

rithm performs consistently better than the other algorithms

in all test cases. To schedule a task graph with a high λ ,

proper assignment of dependent tasks on different processors

is essential to avoid or reduce high waiting costs. Again,

running the algorithm multiple times allows us to find better

solutions than a single run.

In addition, we also perform the experiments to evaluate

the effectiveness when problem scale increases. For com-

parison, we introduce a new comparing item. We define the

ratio of other algorithm and CRO makespan as argument

INC:

INC =
makespan of others

makespan of CRO
(4)

which others means HEFT, HEFT NI, CPOP and

CPOP NI. INC indicates that CRO is how much better

than the other algorithms. If the INC is bigger than one,

it illustrates the makespan of CRO is smaller, and CRO is

better. At the same time, the smaller the makespan of CRO

is, the bigger INC is, and CRO is more suitable.

The CRO-based algorithm outperforms the other algo-

rithms in all test cases for varied problem scale. Fig. 9 give

the results respectively. The two parameters CCR and λ are

fixed at value 1.0 and 1.0 respectively. For CRO run, we

also show the average INC of both the best solutions and

the average solutions in each test case. The results indicate

the INC of scheduling is greater than value one in each task

size. CRO performs consistently better than all the other

algorithms when the problem scale getting bigger. Further,

we can find that the curves are incremental when the task

number increases, that means CRO is more superior for

problems with large scale.

Especially, we increase the number of function evaluations

with problem scale getting larger. while in fact, increasing

the amount of CRO evaluations by specified rate is not

necessary. That means the mount of evaluations doesn’t need

to increase same rate when the solution space increases. An

example is shown from Table V, when the task number

is 35, the solution space is 835 , and the mount of CRO

computation is 500000 (20000*25), so the computation rate

K35 = 1.2326 × 10−26(500000/835). However, when the

task number is 40, the rate is K40 = 9.2159 × 10−31,

much less than K35. Also we can see that the rate decrease

quickly when the problem scale increase, that futher proves

our method is more suitable for large scale problem. Again,

running CRO more times allows us to find better solutions.

V. CONCLUSION

We design a CRO-based algorithm for scheduling tasks

on heterogeneous processors. This algorithm incorporates

a CRO search to map processors to tasks while using

an intelligent approach to assign the execution orders of

tasks by task level. It increase search space effectively.

So we can usually obtain better solution without much

computational cost. CRO is a chemical-reaction-inspired

meta-heuristic for general optimization. With the framework

of CRO, we develop several operators so as to make CRO

capable of generating good solutions which satisfy the

problem requirements and constraints of task scheduling.

The experiments show that this algorithm outperforms HEFT

and CPOP, a widely used non-deterministic algorithm for

heterogeneous computing systems, with a higher speed up

and lower makespan on task execution. The advantage of this

algorithm is more noticeable if proper assignment of tasks

on processors is critical to locate high quality solutions. In

the future, we will combine some classic heuristic method

to search better task topologies(i.e. ANT, GA), at the same

time, improve the CRO elementary reaction operators. This

modification may result in better makespan and may further

improve the quality of solutions.

ACKNOWLEDGMENT

We would like to thank the anonymous referees for their

valuable comments on improving the quality of the paper.

REFERENCES

[1] A. Lam and V. Li. Chemical-reaction-inspired metaheuristic for
optimization. Evolutionary Computation, IEEE Transactions
on, 14(3):381 –399, june 2010.

[2] H. Yu. A hybrid ga-based scheduling algorithm for heteroge-
neous computing environments. In Computational Intelligence
in Scheduling, 2007. SCIS ’07. IEEE Symposium on, pages 87
–92, april 2007.

[3] H. Topcuoglu, S. Hariri, and M.-Y. Wu. Performance-effective
and low-complexity task scheduling for heterogeneous com-
puting. Parallel and Distributed Systems, IEEE Transactions
on, 13(3):260 –274, mar 2002.

22

(a) (b)

(c) (d)

Figure 9. INCs for different task number, (a) INC for HEFT. (b) INC for HEFT NI. (c) INC for CPOP. (d) INC for CPOP NI.

[4] M. R. Garey and D. S. Johnson. Computers and Intractability;
A Guide to the Theory of NP-Completeness. W. H. Freeman
& Co., New York, NY, USA, 1990.

[5] E. Hou, N. Ansari, and H. Ren. A genetic algorithm for
multiprocessor scheduling. Parallel and Distributed Systems,
IEEE Transactions on, 5(2):113 –120, feb 1994.

[6] K. Hwang and J. Xu. Mapping partitioned program modules
onto multicomputer nodes using simulated annealing. In ICPP
(2)’90, pages 292–293, 1990.

[7] A. Nanda, D. DeGroot, and D. Stenger. Scheduling directed
task graphs on multiprocessors using simulated annealing. In
Distributed Computing Systems, 1992., Proceedings of the 12th
International Conference on, pages 20 –27, jun 1992.

[8] A. Lam and V. Li. Chemical reaction optimization for cognitive
radio spectrum allocation. In GLOBECOM 2010, 2010 IEEE
Global Telecommunications Conference, pages 1 –5, dec. 2010.

[9] J. Sun, Y. Wang, J. Li, and K. Gao. Hybrid algorithm based on
chemical reaction optimization and lin-kernighan local search
for the traveling salesman problem. In Natural Computation
(ICNC), 2011 Seventh International Conference on, volume 3,
pages 1518 –1521, july 2011.

[10] S. C. S. Porto and C. C. Ribeiro. A tabu search approach to
task scheduling on heterogeneous processors under precedence
constraints. International Journal Of High Speed Computing,
7(1):45 –71, 1995.

[11] H. Topcuoglu, S. Hariri, and M.-Y. Wu. Task scheduling
algorithms for heterogeneous processors. In Heterogeneous
Computing Workshop, 1999. (HCW ’99) Proceedings. Eighth,
pages 3 –14, 1999.

[12] M. Daoud and N. Kharma. An efficient genetic algorithm
for task scheduling in heterogeneous distributed computing
systems. In Evolutionary Computation, 2006. CEC 2006. IEEE
Congress on, pages 3258 –3265, 0-0 2006.

[13] X. Tang, K. Li, G. Liao, and R. Li. List scheduling with
duplication for heterogeneous computing systems. Journal of
Parallel and Distributed Computing, 70(4):323 – 329, 2010.

[14] J. Xu, A. Lam, and V. Li. Chemical reaction optimization for
task scheduling in grid computing. Parallel and Distributed
Systems, IEEE Transactions on, 22(10):1624 –1631, oct. 2011.

[15] T. Tsuchiya, T. Osada, and T. Kikuno. Genetic-based multi-
processor scheduling using task duplication. Microprocessors
and Microsystems, 22:197 –207, 1988.

23

