
SPECIAL SECTION ON EMERGING CLOUD-BASED WIRELESS COMMUNICATIONS AND NETWORKS

Received October 15, 2015, accepted November 4, 2015, date of current version January 22, 2016.

Digital Object Identifier 10.1109/ACCESS.2016.2518179

Offload Decision Models and the Price of Anarchy
in Mobile Cloud Application Ecosystems
BO GAO, LIGANG HE, (Member, IEEE), AND STEPHEN A. JARVIS
Department of Computer Science, The University of Warwick, Coventry CV4 7AL, U.K.

Corresponding author: L. He (liganghe@dcs.warwick.ac.uk).

This work was supported by the Research Project Grant of the Leverhulme Trust under Grant RPG-101.

ABSTRACT With the maturity of technologies, such as HTML5 and JavaScript, and with the increasing
popularity of cross-platform frameworks, such as Apache Cordova, mobile cloud computing as a new design
paradigm of mobile application developments is becoming increasingly more accessible to developers.
Following this trend, future on-device mobile application ecosystems will not only comprise a mixture of
native and remote applications, but also include multiple hybrid mobile cloud applications. The resource
competition in such ecosystems and its impact over the performance of mobile cloud applications has not
yet been studied. In this paper, we study this competition from a game theoretical perspective and examine
how it affects the behavior of mobile cloud applications. Three offload decision models of cooperative
and non-cooperative nature are constructed and their efficiency compared. We present an extension to the
classic load balancing game to model the offload behaviors within a non-cooperative environment. Mixed-
strategy Nash equilibria are derived for the non-cooperative offload game with complete information, which
further quantifies the price of anarchy in such ecosystems. We present simulation results that demonstrate
the differences between each decision model’s efficiency. Our modeling approach facilitates further research
in the design of the offload decision engines of mobile cloud applications. Our extension to the classic load
balancing game broadens its applicability to real-life applications.

INDEX TERMS Mobile computing, mobile cloud computing, energy-aware.

I. INTRODUCTION
Mobile cloud computing is an emerging field of research
that aims to provide a platform on which intelligent and
feature-rich applications are delivered to the user’s fingertips
efficiently. This efficiency comes from the adaptive offload
ability of mobile cloud applications which is key to the
seamless integration of mobile devices and cloud servers.
Pioneered by the likes of MAUI [1], CloneCloud [2] and
ThinkAir [3], adaptive computation offload as a core tech-
nology in mobile cloud computing has gathered momentum
in recent years and has grown from a futuristic concept to a
practical means to improve and augment the user’s experience
of mobile applications.

A mobile cloud application as we discuss in this paper
is an application whose main functionality may be executed
independently on either a mobile device or a cloud server.
This means that the application is able to offload or migrate
itself seamlessly between the two platforms. This offload
decision is often taken at runtime according to the current
network condition and the anticipated workload size [1], [4].

We also refer to this class of applications as Hybrids as
opposed to Native and Remote to distinguish applications by
their designated execution platform.

It is important to note that our use of these three terms,
hybrid, native and remote, refers to the place of execution of
the application’s main functionality and its ability to seam-
lessly migrate between device and cloud, rather than the
traditional use of these terms where they refer to the environ-
ment it is developed in. Traditionally when an application is
written in a native language like Objective-C for iOS devices
or Java for Android devices, it is referred to as a native
application; an application that’s run on a web server and
delivered to the user via a browser is referred to as a remote
mobile web application. A hybrid application in this sense
is a crossover between these two approaches. The majority
of a hybrid application’s code is usually written in HTML5
and JavaScript and rendered by the device’s web engine, so
the code is portable between platforms. A hybrid application
also include native codes to refine user experience and get
access to a wider range of device functionalities. This code
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portability is an attractive option for the development of
mobile cloud applications. However, a hybrid application as
in mobile cloud computing is more intelligent in utilising
different platforms at runtime.

In order to qualify as a hybrid application as we discuss in
this paper, the application need not only be deployable to dif-
ferent platforms, but also make offload decisions at runtime
to improve user experience. The code portability of a hybrid
mobile cloud application also need not be limited to the use
of HTML5, MAUI [1] is written in C# for Microsoft’s .NET
Common Language Runtime, CloneCloud [2] modified the
Dalvik VM for code migration on Android OS, ThinkAir [3]
builds its offload platform with a modified version of
Android ×86. A more recent work [5] utilises a modified
version of WebKit to support the offload of HTML5 workers.

Besides existing research level implementations of mobile
cloud applications (we recommend two excellent surveys,
[6] and [7], to the interested readers for a comprehensive
list of existing research in mobile cloud computing), we
argue that the increasing popularity of HTML5 as a mobile
application development framework also greatly shortens the
time required to develop applications that are deployable both
natively on the mobile device and remotely as cloud services.
The use of HTML5 and platforms like Apache Cordova help
significantly lower the level of technical challenges involved
in the development of mobile cloud applications. We expect
to see an increasing number of mobile applications to adopt
the adaptive execution approach proposed by the research of
mobile cloud computing in the near future.

A. PROBLEM STATEMENT
With the increasing popularity of mobile cloud applications
come one problem currently missing from the research of
mobile cloud computing which is the recognition of the
competition for resources between applications on mobile
devices. Applications are selfish entities. Notwithstanding
the cooperative interactions that may exist within certain
applicationworkflows, given a host device, each application’s
performance is proportional to the exclusivity it has over
its host’s resources. Therefore the competition for resources
underlies each community of applications that lives on the
same computing device. Recognising the existence of this
competition is especially important for the applications that
are hosted by resource constrained mobile devices.1

We illustrate the resource competition in a mobile
cloud application ecosystem with Fig. 1. Three classes of

1Note that the application of our approach is not limited to communities
of hybrid applications in future developments. With the popularity of mobile
applications (or apps in short), the real estate of a mobile device has already
been heavily competed on by the many apps that are currently installed on
each device. According to the data published by Google’s Our Mobile Planet
report [8] for 2013, on average 28.5 apps are installed on each smartphone in
the UK which is just above the overall average (26) among the 47 countries
included in the survey. In South Korea and Switzerland this number is
higher at 40 apps per smartphone. A similar figure is reported by Nielsen
in their early 2014 report [9] which includes both Android and iOS users.
[10] report an average number of 177 apps installed on their participant’s
android devices.

FIGURE 1. A mobile cloud application ecosystem.

applications share the same mobile device. A wireless con-
nection is established to a remote cloud service supporting
computation offload.2 The main functionality of a native
application is carried out on the local CPU, whereas a remote
application carry out the majority of its computation via
cloud services. To access a cloud service, data is sent via
the transceiver of equipped on the mobile device. A hybrid
application has the ability to choose between the two plat-
forms. Its offload decision precedes the execution of its main
functionality.

Competition of resources comes with either options for
a hybrid application. The path of native execution is shared
with other native applications at the CPU, whereas the path
of remote execution is firstly bottlenecked at the transceiver,
and consequently congested at the supporting cloud server.
This competition is apparent between hybrids and other two
classes of applications, but more importantly it exists within
the hybrid class itself.

Existing research in mobile cloud computing focuses on
the application’s ability to offload computation between
mobile and cloud. Offload decisions in existing work are
based on the device’s parameters without taking into account
that it may not be the only application that’s using these
resources (i.e. the processing unit and the wireless data con-
nection). This uninformed decision making process means
that the offload decision made may not be as beneficial as
predicated.

B. A SIMPLE EXAMPLE
We demonstrate the effect of an uninformed offload decision
with a simple example as shown in Table 1. We assume three
scenarios where two hybrid applications share a device. Each
number in the table represents the amount of time it takes the
application to run on a platform assuming exclusive usage

2A remote application does not have to run on the same cloud server as
the hybrid applications. A proprietary application (e.g. Facebook or Twitter)
is usually supported by its own servers. Furthermore, a proprietary server
is also unlikely to accept offload requests from a personal device. For these
type of remote applications, we set wbi to be zero in our model since they
don’t consume the computation resources on our cloud.
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TABLE 1. Effect of different offload decisions.

of the device’s resources, in seconds. A circle represents the
decision made by the application. Scenario A is a typical
example of applications making uninformed decisions. Both
applications assume that it is the only application running on
the device and the cost comparison between the two platforms
means both applications prefer to execute on the cloud. This
makesR congested while leaving theN vacant. The total cost
on R is 25 seconds compared to the cost of 0 on N.

From the user’s point of view, themakespan (i.e. social cost
as we discuss in detail in III-C4 and III-D) of the system as a
whole is 25 seconds. This social cost is higher than either of
the other scenarios where the applications’ choice of platform
are split between N and R.

From each application’s point of view, in A, if each appli-
cation’s sub tasks are scheduled in a round-robin way on R,
the expected time costs for both applications are 25 seconds;
if the scheduling order is randomly chosen between the
two applications as a whole, the expected cost is 17.5 seconds
for i = 1, and 20 seconds for i = 2, all higher than the cost if
it were run on N.

C. OBJECTIVE AND CONTRIBUTION
In this paper, we model each of the three offload decision
models that applies to a mobile cloud computing scenario
in Sec. III. We especially focus on the game theoretical
modelling of the offload game with complete information.
We derive the mixed-strategy Nash equilibrium of the game
and its social cost at equilibrium in Sec. III-C. The derivation
of the Nash equilibrium is significant that it provides a basis
for measuring the distance (referred to as the ‘‘price of anar-
chy’’ of the game which we introduce in Sec. III-C4) between
a non-cooperative and a cooperative application ecosystem.
With the model we present in Sec. III-C, we also extend the
classic load balancing game [11] which has been highly cited
since its publication. Comprehensive simulation experiments
has been conducted and presented in Sec. IV. Results from
the comparisons between the three models provide us with
a rare insight into the behaviours of applications within a
community (ecosystem).

The impact and future direction of this paper is in two
folds. First, from the user’s perspective, we provide a suite
of modelling tools to quantify the costs and benefits of dif-
ferent offload decision making processes so that an informed

decision can be made on a global level. Our results pave the
way for future development of manager services of hybrid
applications on the device to provide a cooperative environ-
ment. Second, from a hybrid application’s point of view, in
absence of a cooperative mechanism, it is able to derive an
offload strategy that’s most beneficial to itself.

II. RELATED WORK
Our work furthers existing research of mobile cloud comput-
ing by modelling the resource competitions in such applica-
tion ecosystems and analysing its effects over the efficiency
of the offload actions of mobile cloud application. We study
this competition from a game theoretical perspective. In this
section, we discuss related work in the area of mobile cloud
computing.

The idea of transferring computation to a nearby process-
ing unit in order to improvemobile application’s performance
and reduce local energy cost has been researched along with
the maturity of mobile technologies. Many ideas and tech-
niques we use in this paper are inspired by this work.

Early research focuses on the partitioning schemes of an
application. Aimed at energy management, a compile-time
framework supporting remote task execution was first intro-
duced in [12]. Based on the same approach, a more detailed
cost graph was used in [13] with a parametric analysis on
its effect at runtime presented in [14]. Another compiler-
assisted approach was introduced in [15], which turns the
focus to reducing the application’s overall execution time.
Spectra [16] adds application fidelity (a run-time QoS mea-
surement) into the decision making process and uses it to
leverage execution time and energy usage in its utility func-
tion. Spectra monitors the hardware environment at run-
time and choose between programmer pre-defined execution
plans. Chroma [17] builds on Spectra but constructs the utility
function externally in a more automated fashion. MAUI [1]
also reduces the programmer’s workload by automating some
of the partitioning process models. The offload decision
engine applies an integer programming techniques to produce
allocation schemes. Aimed at reducing the communication
costs, [18] proposes the concept of cloudlets, which brings
the distant Cloud to the more commonly accessible WiFi
hotspots. A dynamic VM synthesis approach is proposed
in [18]. The offload decision models (section III-B) in these
studies estimate the benefit of an offload action based on the
device’s current bandwidth to the network.

Besides existing research level implementations of mobile
cloud applications (we recommend three excellent surveys,
[6], [7], and [19], to the interested readers for a comprehen-
sive list of existing research in mobile cloud computing), we
argue that the increasing popularity of HTML5 as a mobile
application development framework also greatly shortens the
time required to develop applications that are deployable both
natively on the mobile device and remotely as cloud services.
The use of HTML5 and platforms like Apache Cordova help
significantly lower the level of technical challenges involved
in the development of mobile cloud applications. We expect
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to see an increasing number of mobile applications to adopt
the adaptive execution approach proposed by the research of
mobile cloud computing in the near future.

Our work is distinguishable from existing studies in that
we considers the efficiency of the application ecosystem on
each device rather than that of a single application. The coop-
erative offload decision model we propose take into account
the resource competition between applications within each
ecosystem which is missing from existing research. The abil-
ity to offload or migrate computation from mobile devices to
clouds is integral to the research of mobile cloud computing.
Before an offload decision is made, the application must
estimate the potential cost and benefit of such an action.
When an application is assumed to have exclusivity or strict
top priority over its host device’s wireless data connection, the
applicationmay estimate its offload cost based on the device’s
entire bandwidth rather than the actual share of bandwidth
available on the host device. This causes the application to
over-estimate the benefit of an offload action.

III. DECISION MODELS OF COMPUTATION OFFLOAD
In a mobile cloud computing scenario, applications have the
option to either execute locally on its host device or offload
and execute remotely on a supporting cloud platform. The
application must estimate the cost and benefit of an offload
action prior to making a decision. Depending on how much
information this application has of other applications running
on the same device, this decision making process may yield
different results. In this section, we formulate the different
decision models of a mobile cloud application ecosystem.

We begin with an introduction of the notations used to
describe a mobile cloud application ecosystem.

A. SYSTEM NOTATIONS OF MOBILE CLOUD
APPLICATION OFFLOAD
To describe amobile cloud application ecosystem, we assume
a set of n independent applications sharing the same mobile
device, denoted as [n] = {1, . . . , n}. Each application i ∈ [n]
is to choose between two parallel execution platforms, which
we refer to as the remote cloud R and the native processing
unit N in our model, in order to minimise its execution time
cost.

Let aji be a binary variable indicating i’s decision to exe-
cute on platform j. All aji together constitute an assignment
A : [n] → {R,N} with A(i) denotes the chosen platform
for i.

The weight of each application i has two components:

wdi which denotes the size of the data that is to be
transmitted over the wireless network if application
i is offloaded to R,

wbi which denotes the amount of computation binary
that is associated with i.

In correspondence, the speed in which each platform
j ∈ {R,N} can process an application also consists of
two components:

sdj which denotes the data transmission speed3 to j,
with sdN = inf and sdR = bandwidth between
N and R,

sbj which denotes the computation speed of j’s process-
ing unit, we assume sbN < sbR.

Not all mobile applications in [n] has the ability to migrate
between N and R. Some are fixed to run natively (locally),
whereas some may rely on an active data connection to run
remotely. To represent this distinction within [n], we divide
[n] into three distinct subsets:
[n]N for native applications fixed to run on N,
[n]R for remote applications fixed to run on R,
[n]H for hybrid (mobile cloud) applications that may run

on either N or R.
This composition of applications is illustrated by Fig. 2.

FIGURE 2. Composition of the mobile application ecosystem.

Note that we use subscripts for applications and super-
scripts for platforms when a variable is associated with both
sets. With these notations, we first derive the classic offload
decision model.

B. OFFLOAD WITH SYMMETRICALLY
INCOMPLETE INFORMATION
In this scenario, each application i knows the properties of
both platforms (sdj , sdj , j ∈ N,R) and of its own task
(wdi , w

b
i ), but is unaware of the other applications who also

share the resources provided by the same device. Due to this
limitation, exclusive usage of the device’s data connection
and processor is assumed by all applications. Hence the
offload decision of i is given by

aRi =

1, If
wdi
sdR
+

wbi
sbR
<

wdi
sdN
+

wbi
sbN

0, Otherwise.
(1)

with aNi = 1− aRi .
Depending on the capacity of the device’s wireless data

connection (sdR), the benefit of remote execution (i.e. reduced
execution time, given by wbi /s

b
N − wbi /s

b
R) may be offset by

the additional communication cost (between the device and
the cloud, given by wdi /s

d
R) when applications are run on or

3When an application is run on the local device, we assume that the speed
at which its binary reaches the processor is infinite. This way we keep the
equations generic, and we don’t have to add an indicator variable inside the
subsequent equations (e.g. (2)).
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offloaded to the cloud. Therefore mobile cloud applications
often require that the data connection speed betweenN andR
to be greater than a certain threshold before an offload action
is considered [4], [20]. The capacity of the device’s wireless
data connection greatly influence the decision making pro-
cess of offload-able applications.

There are two potential flaws in this offload decision
model. First, the wireless connection may be occupied by
other applications, which means that the actual data transmis-
sion cost is greater than wdi /s

d
R. Second, the local processing

unit is also shared with other applications, hence the cost of
local executionwbi /s

b
N and therefore the benefit of remote exe-

cution as given by wbi /s
b
N − w

b
i /s

b
R are also under-estimated.

Both flaws are direct results of the incomplete information
given to each application.

To complete the notation of this subsection, we denote2B
to represent the social cost of the system under the symmet-
rically incomplete information decision model. We further
discuss the definition of social costs in III-C4 and III-D. The
‘‘B’’ in this notation comes from the fact that the wireless
data bandwidth plays a crucial role in this decision model.
Next, we derive the decision model when applications are
given complete information of other applications.

C. OFFLOAD WITH COMPLETE INFORMATION
We now consider the scenario in which all applications are
given complete information of the weights4 of all other appli-

cations (wbi , w
d
i , i ∈ [n]). Given an assignment A : [n] →

{R,N}, the cost (time delay) for application i is given by

ci =
∑
k∈[n]

A(k)=A(i)

(
wdk
sdA(k)
+

wbk
sbA(k)

)
(2)

which assumes that no priority is assigned to any application.
That is to say that both data packets over the data connection
and instructions in the processor stack are scheduled in a
round-robin way. Following this, the cost of platform j is
given by

Cj =
∑
i∈[n]
A(i)=j

(
wdi
sdj
+
wbi
sbj

)
(3)

(2) and (3) together correct the inaccuracy caused by incom-
plete information.

1) THE OFFLOAD GAME
It is easy to see that the decision of each application is
directly influenced by the decisions made by others. Since
each application’s goal is to minimise its own cost, the offload
decision model with complete information can be described
by a non-cooperative game theoretic framework.

In this game, which we refer to as the offload game, each
application is an agent (player) whose objective is to min-
imise ci. Each application has a strategy profile of {N,R}.

4In practical terms, the weights of an application can be predicted based
on its historic profiles as done in [10].

A collection of pure strategies of all applications i ∈ [n] con-
stitutes an assignment A. A mixed strategy5 is a probability
distribution over the set of pure strategies {N,R}.

2) MIXED STRATEGIES AND EXPECTED COSTS
We first denote the probability that agent i choose to run on
platform j with pji = P[A(i) = j]. Then the expected cost
of platform j under the strategy profile P = {pji , i ∈ [n],
j ∈ {N,R}} is

E[Cj] =
∑
i∈[n]

pji

(
wdi
sdj
+
wbi
sbj

)
. (4)

For application i, its expected cost when selecting j is

E[cji] =
wdi
sdj
+
wbi
sbj
+

∑
k∈[n]
k 6=i

pjk

(
wdk
sdj
+
wbk
sbj

)
. (5)

This together with (4), we have

E[cji] = E[Cj]+ (1− pji)
(
wdi
sdj
+
wbi
sbj

)
(6)

which derives

pji

(
wdi
sdj
+
wbi
sbj

)
= E[Cj]− E[cji]+

(
wdi
sdj
+
wbi
sbj

)
(7)

and further derives

pji =
(
E[Cj]− E[cji]+

(
wdi
sdj
+
wbi
sbj

))/(
wdi
sdj
+
wbi
sbj

)
(8)

which gives all applications’ mixed strategies as a function of
E[Cj] and E[cji] and constitutes P.

3) NASH EQUILIBRIUM
We now describe the Nash equilibrium of this game. A game
is said to be in Nash equilibrium when no agent (application
i) of the game, with complete knowledge of all other agents’
strategies (P), is able to make gains or reduce its cost by
unilateral actions. Not all strategy profiles define a Nash
equilibrium. In order to find the P which defines a Nash
equilibrium, further constraints is to be added to (8).

5We consider mixed strategies rather than pure strategies because it is
a better match to the mobile cloud computing scenario. First, in a game,
there may be multiple (or none as in the rock-paper-scissors game) pure
strategy equilibria, including the optimal assignment which we derive in
subsection III-D. To reach a pure strategy equilibrium, the order in which
each agent is given the right to make a strategy decision affects which pure
strategy equilibrium the system would reach. In our mobile cloud scenario,
the mobile OS does not explicitly define this order, and it also wouldn’t be
fair for the OS to do so without user consent. Second, beside the saving in
execution time, hybrid applications can also provide the user with higher
quality service when it is run on a remote cloud as seen in [21]. Therefore, the
user may opt for a remote execution regardless. Therefore, only a probability
of an application’s pure strategy can be observed. Because of these reasons
a pure strategy profile is not a stable representation of our offload game.

On the contrary, a mixed strategy profile only requires that each applica-
tion is aware of the probability of others’ offload decisions. The mobile OS
has this information readily available from its network access log, and is able
to share this with all applications.
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First, in a Nash equilibrium, each application agent only
assign non-zero probabilities to platform j if

E[ci] = E[cji] = min
j∈{N,R}

E[cji], i ∈ [n]. (9)

We define a support indicator

α
j
i =

{
1, if pji > 0
0, otherwise.

(10)

Take (7) into (4) with the introduction of αji and (9), we get

E[Cj] =
∑
i∈[n]

α
j
i

(
E[Cj]− E[ci]+

(
wdi
sdj
+
wbi
sbj

))
(11)

for j ∈ {N,R}.
Second, each application i should distribute all of its weight

completely, that is∑
j∈{N,R}

pji = 1, i ∈ [n]. (12)

Take (8) into (12) with the introduction of αji and we get∑
j∈{N,R}

α
j
i

(
E[Cj]− E[ci]+

(
wdi
sdj
+
wbi
sbj

))
=

(
wdi
sdj
+
wbi
sbj

)
(13)

for i ∈ [n].
Observe that (11) and (13) together have n + 2 variables

(E[Cj] and E[ci]) and n+ 2 equations, meaning that a unique
solution is defined. Therefore, the strategy profile of the Nash
equilibrium of our offload game is completely defined by (8),
(11) and (13). We further give the solution of pRi in (14), as
shown at the bottom of this page, with C f

R and C f
N denote

the cost from [n]R and [n]N respectively. The corresponding
derivation is attached in Appendix.

4) SOCIAL COST, EXPECTED MAKESPAN
AT P AND PRICE OF ANARCHY
So far we have been looking at the costs from each
application’s perspective. Indeed, because of the non-
cooperative nature of the offload game, the derivation of P
is driven by each application’s expected ci. However, from
user’s perspective, the overall cost of the system is of greater
importance. In game theory terms, this system cost is referred
to as the social cost of the game system. In our offload
game, we define the social cost to be the makespan of
the system. We discuss the optimal social cost in the next
subsection (III-D) with the cooperative decision model.

But first, following our results of the Nash equilibrium strat-
egy profile P, we derive the social cost of the system at Nash
equilibrium.

Given a strategy profile P we derive the social cost
(expected makespan) of the system at P, which we denote
with 2P as

2P =
∑

A(1)∈{N,R}
· · ·

∑
A(n)∈{N,R}

n∏
i=1

pA(i)i max
j∈{N,R}

E[Cj] (15)

This quantity gives an indication of the system’s performance
at P. When strategy profile P defines an equilibrium, it is
important to compare2P (Nash social cost) with the system’s
optimal performance (optimal social cost), denoted as 2opt
which we discuss in the next subsection (III-D). The ratio
2P : 2opt is referred to as the price of anarchy (also referred
to as ‘‘coordination ratio’’ in [11]) of the game.

We study the price of anarchy of a system which is an
indication of how much worse a system would perform if no
control is applied on a system level. First introduced in [11],
price of anarchy is a key concept often associated with the
study of Nash equilibrium in game theory. A Nash equilib-
rium as we have shown is driven by the selfish behaviours of
the agents of a system. Because each agent is only concerned
with its own cost when making strategy decisions, without
system level control, the overall performance of the system
in anarchy becomes a by-product of the competition between
the agents. The distance between this by-product and the
optimal performance is represented by the price of anarchy
of the game.

We show in the following subsection that the system cost
can be minimised when system level control is applied. Then
in IV-B and IV-C we further demonstrate how system perfor-
mance is described by price of anarchy.

D. COOPERATIVE OFFLOAD AND THE MAKESPAN
SCHEDULING PROBLEM
The offload decisionmodels we discussed in the previous two
subsections both assume non-cooperative behaviours within
the system. In this third offload decision model, we assume
the contrary where a global authority is in place to manage the
offload / migration behaviour of the mobile cloud application
ecosystem.

From a global perspective, recall that the cost of the system
(also referred to as social cost in game theory terms) is
defined to be the makespan, that is, the maximum schedule
length between the two platforms. This naturally leads to a
variation of the classic makespan scheduling problem. Recall
that aji indicates if i chooses to run on j, and that [n]

N and [n]R

pRi =
(
wdi
sdR
+
wbi
sbR

)/(
wdi
sdN
+
wbi
sbN
+
wdi
sdR
+
wbi
sbR

)
+

(
C f
R − C

f
N +

∑
k∈[n]H

(
wdk
sdR
+
wbk
sbR

)
−

(
wdk
sdN
+
wbk
sbN

))/((
1− |[n]H|

)(
wdi
sdN
+
wbi
sbN
+
wdi
sdR
+
wbi
sbR

))
(14)
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TABLE 2. Simulation parameters.

denote the subsets of applications that are fixed to run on
N and R respectively. With these we formulate the problem
as an integer program:

minimise 2opt = max
j∈{R,N}

n∑
i=1

aji

(
wdi
sdj
+
wbi
sbj

)
(16)

subject to aRi + a
N
i = 1, i ∈ [n] (17)

aji ∈ {0, 1}, i ∈ [n], j ∈ {R,N} (18)

aNi = 1, i ∈ [n]N (19)

aRi = 1, i ∈ [n]R. (20)

Note that our problem is different from the classic makespan
scheduling problem in that the speed of each machine (plat-
form) consists of two sub-speeds (sj = {sdj , s

b
j }). Therefore

the machines in our problem can not be ordered by their
speeds as in the classic makespan scheduling problem [22].
The complexity of this problem is at least NP-hard since it
contains a special case, when ∀j ∈ {R,N} : sdj = sbjj , which
can be reduced to a classic makespan scheduling problem
which is NP-hard even for two identical machines.

The solution of this integer program gives us the optimal
assignment in terms of minimising the social cost of the
system. However, besides the complexity, the solution also
assumes that there is a global authority that enforces the
assignment which is not the case in the current mobile cloud
computing framework. Operating systems who manage the
wireless data protocol on mobile devices does not sched-
ule where applications are run. Techniques exist to exploit
delay-tolerant property of some applications to reduce the tail

energy overhead [23]. Pre-fetching is another technique used
to improve the efficiency of the data link [23], [24]. Though
in all cases, the operating system attempts to complete all
requests from applications and does not proactively seek to
offload any particular application.

Existing offload techniques in mobile cloud computing
assumes exclusivity over the host device’s data link. Offload
decisions are made selfishly by the application. Therefore we
next introduce a game theoretic framework to study the effect
of the selfish behaviours in the ecosystem of mobile cloud
applications.

IV. EXPERIMENTS
In this section we demonstrate and visualise the behaviours
of mobile cloud applications under different offload decision
models, and the influence of such over the social cost of
mobile cloud application ecosystems.

Each group of simulation tests is referred to in this paper
by a group ID which is given in the first column of Table 2.
Detailed parameters of these test groups are also given in
this table. We define each application’s data and computa-
tion weights to be the multiples of a unit weight, and each
platform’s processing data and computation speeds to be
the number of unit weights it may process in one second.
Therefore the social costs are also measured in seconds.

A. STRATEGY BEHAVIOUR OF NON-COOPERATIVE
APPLICATIONS
In this group of experiments, we observe the behaviour
of individual applications under different offload decision
models.
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FIGURE 3. Offload Strategy Behaviour. Non-Cooperative incomplete information: aR1 , aRi , 2B , 2N
B , 2R

B ; non-cooperative
complete information (Nash): pR1 , pRi , 2P and Cooperative Offload: 2Opt . (a) Strategies (S1&S1F). (b) Social costs (S1).
(c) Strategies (S2). (d) Social costs (S2). (e) Strategies (S3). (f) Social costs (S3). (g) Strategies (S4). (h) Social costs (S4).

1) APPLICATION WITH INCREASING WEIGHT
In this group of tests, we assume a system of 10 hybrid
applications. We increase the weight of one of the appli-
cations (observed) while keeping all other (support) appli-
cations’ weights unchanged. In S1 and S1F, as shown in
Fig. 3 (a) and (b), we increase the computation weight of the
observed application by 10 units until it reaches 500 at which
point it has identical weights to the support applications.
In S2, as shown in Fig. 3 (c) and (d), we begin with a group of
10 identical applications and gradually increase the compu-
tation weight of the observed application. The applications’
non-cooperative offload strategies towards remote execution
are as shown in Fig. 3 (a) and (c). The social costs are as
shown in Fig. 3 (b) and (d).

Recall that when offload decisions are made according
to incomplete information, all applications assume exclusive
usage of the device’s data connection. Because the wireless
bandwidth in S1 and S1F are sufficiently large (50 units
per second), the delay caused by this communication task
is small enough to not deter the support applications ( )
from remote execution. For the observed application ( ),
because its initial computation size is relatively small, unlike
the applications in the support group, its benefit of remote
execution is not sufficiently large enough to overcome the
extra cost of data communication at early stages of S1 and
S1F and prefers native execution.

On the contrary, when applications are given complete
information of others’ strategies, we see from Fig. 3 (a)

that the observed application’s preference on remote
execution ( ) is reduced as its computation weight
increases.

This behaviour seems counterintuitive and counter-
productive since it follows a completely opposite direction to
that of the incomplete information scenario. Further reduction
to (14) helps understand this strategy choice. We apply
S1’s application composition to (14) and derive

pR1 =
8
(
wd1
sdR
+

wb1
sbR

)
+

wb1
sbN
+ 9

(
wbi
sbN
−

(
wdi
sdR
+

wbi
sbR

))
9
(
wd1
sdR
+

wb1
sbR
+

wb1
sbN

) (21)

In (21) we see that pR1 is dependent on both internal and
external terms. When the platform parameters are fixed,
the internal terms are influenced only by the weights of
the observed application itself. The external term in (21)
represents the collective gain that would have been
obtained by other applications if they were to execute
remotely.

In S1, S1F and S2, the external term is a constant
since the weights of the support applications are constants.
When wb1 increases, the second internal term always increase
faster than the first, the reduction in pR1 ( ) as shown
in Fig. 3 (a) and (c) follows.

Note that at the first few test cycles, in S1, the external term
dominates (21) and the observed application become a pure
strategy agent with pR1 = 1.
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2) APPLICATION WITHIN INCREASING WEIGHTS
In S3 and S4, we fix the weight of the observed application
and increase the support group’s computation weight instead.
In such cases, the external term in (21) become the variable.
Because the increase in computation weight, the collective
gain of the support group, i.e. the external term increases, and
the increase in pR1 ( ) in Fig. 3 (e) and (g) follows.
Also note that because of the switch of behaviour

between the observed application and the support group, their
strategies ( and ) under incomplete informa-
tion are swapped as shown in Fig. 3 (a) and (e) and
Fig. 3 (c) and (g).

3) CHANGE IN PLATFORM PARAMETERS
In S1F, we double the computation speed of the remote plat-
form, therefore the remote platform become more attractive
to all applications as compared to S1. The results shown
in Fig. 3 (a) matches our expectation. In the incomplete
information scenario, the observed application ( ) adopts
remote execution earlier than in S1 ( ). In the complete
information offload game, all players shifted (from and

to and ) their strategy towards R.
Also note that the external term dominated pR1 for more

number of cycles at the beginning of S1F than S1.

B. SOCIAL COSTS OF DECISION MODELS
Wenow look at the social costs of different decisionmodels of
mobile cloud application ecosystems. As shown in Fig. 3 (b)
(d) (f) and (h), in the incomplete information scenario, a step
change is often observed because of the change of strategy
by applications at certain thresholds. We plot the social cost
( ) alongside the cost of N ( ) and R ( ) to illustrate
the relations between the makespan and the costs of each
platform.

Compared with the other two decision models, the incom-
plete informationmodel produces systemswith highest social
costs. Systems that are in Nash equilibrium as defined by
the complete information game have higher social costs
( ) than the optimal solution ( ). We further observe
that the gap (price of anarchy) between the optimal social
costs and Nash social costs in Fig. 3 (d) and (h) increases
while the gap between application computation weights
increases. Therefore in the next group of tests, we investi-
gate the relation between price of anarchy and the weight
deviation in [n].

C. PRICE OF ANARCHY
Recall that the price of anarchy of the complete informa-
tion game is defined by the ratio between the Nash social
cost (2P) and the optimal social cost (2Opt ) of the system,
which we denote with PoAP. For comparison, we further
define the price of anarchy in the symmetrically incomplete
information game to be PoAB = 2B : 2Opt . From S4 and S2,
we observe slight increases in the price of anarchy when the
difference in weight increases in [n]. This leads us to the

hypothesis that the price of anarchy is more significant when
the weights in [n] have a high value of deviation.

1) PRICE OF ANARCHY AND APPLICATION
WEIGHT DEVIATION IN [n]
Following on the hypothesis, we conducted tests Y1, Y2
and Y3 (each occupies a column in Fig. 4). In these three
groups of experiments, we run each cycle of our simulation
with the same parameters with only the computation weights6

of applications randomly drawn from three different distribu-
tions (exponential, Poisson and uniform) at each test cycle.
We choose these three distributions not only because of their
difference in range and variance, but also because each dis-
tribution may be suitable to simulate the workload pattern of
particular mobile application ecosystems. For instance, a set
of applications whoseworkload depends on the arrival time of
different user requests may be more suited to the exponential
distribution. Applications whose workload is pre-defined to
be within a range with equal probability to pick within this
range is more suited to the uniform distribution model.

We label each test cycle with the standard deviation of the
computationweights of all applications (i.e. δ({wbi }, i ∈ [n])),
and apply all three decision models to the system simulated
in that cycle. With each of the two non-cooperative decision
models, we record its social cost and compare it with the opti-
mal social cost produced by the cooperative model. We plot
five properties of the system against its deviation label in
each of the five rows of Fig. 4. These properties includes
2P - 2Opt , price of anarchy = 2P : 2Opt , 2B - 2Opt ,
2B:2Opt and the social costs of the system in each
test cycle.

From (a1) and (c1) of Fig. 4, we observe that the increase
in application weight deviation (along the x-axis) indeed
increase the probability of bigger gaps between2P and2Opt .
The same trend is also observed in (a2) and (c2) for the
price of anarchy albeit with a smaller gradient. In contrast,
as shown in (b1) and (b2), all simulations in Y2 have a
similar and stable price of anarchy. this is because Poisson
distribution generates application weights with small devia-
tions (c.f. range of x-axis in (b1)-(b5)). Furthermore, because
applications simulated in Y2 are very similar to each other,
the social costs of all three decision models are bounded
within three small region as shown in (b5).

Row 3 and 4 of Fig. 4 illustrate the difference between
2B and2Opt . While (b3) and (b4) follow a similar pattern as
in (b1) and (b2), results from Y1 and Y3 are rather chaotic.
This is due to the behaviour of the offload model based
on incomplete information. Recall that the model predict an
application’s cost on both platforms based on incomplete
information. This split is largely influenced by the device’s
bandwidth. When the bandwidth is given, this split is deter-
mined by the weights of the applications.When these weights

6We also conducted experiments that randomised both data and compu-
tation weights. The results are similar to that of Y1, Y2 and Y3 and so are
omitted for brevity.
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FIGURE 4. Y1, Y2 and Y3. Gap between 2P , 2B and 2Opt , price of anarchy, social costs. (a1) Y1, 2P −2Opt . (b1) Y2, 2P −2Opt .
(c1) Y3, 2P −2Opt . (a2) Y1, 2P : 2Opt . (b2) Y2, 2P : 2Opt . (c2) Y3, 2P : 2Opt . (a3) Y1, 2B −2Opt . (b3) Y2, 2B −2Opt . (c3) Y3, 2B −2Opt .
(a4) Y1, 2B : 2Opt . (b4) Y2, 2B : 2Opt . (c4) Y3, 2B : 2Opt . (a5) Y1, Social costs. (b5) Y2, Social costs. (c5) Y3, Social costs.

3134 VOLUME 3, 2015



B. Gao et al.: Offload Decision Models and the Price of Anarchy in Mobile Cloud Application Ecosystems

FIGURE 5. Price of anarchy (2P : 2Opt ) following changes in platform parameters. (a) Increase in remote processing speed. (b) Increase in wireless
bandwidth.

are randomly chosen within a big range as in Y1, and Y3,
this split of applications is likely to produce randomly unbal-
anced groups. Compared to the optimal split produced by the
cooperative model, it is predictable that the 2B produced by
this rather random behaviour has such random distance to
2Opt . We observe from (a3), (a4), (c3) and (c4) of Fig. 4 that
as well as having a big distance from 2Opt (far from the
x-axis), it is also possible for the incomplete information
model to produce near optimal results (near to the x-axis).

The actual system costs of Y1-Y3 are shown in row 5 of
Fig. 4. The increase in price of anarchy is most observable
in (a5) for it has the greatest x range.

2) PRICE OF ANARCHY AND CHANGE
IN PLATFORM PARAMETERS
To further observe the price of anarchy in the system, we also
conducted V1-V3 in which sbR is gradually increased in each
test cycle, and V4-V6 in which sdR is gradually increased in
each test cycle. As shown in Fig. 5, the price of anarchy in
these tests are significantly lower than that from Y1 and Y3
because all applications have similar weights.

The increase in either processing speed and wireless band-
width reduces and then stabilises the price of anarchy. This
is because once a speed term is greater than a certain value,
the cost term it is related to tends to zero and no longer have
any effect over the system cost. Note that the turning points
in Fig. 5 are caused when the optimal cooperative strategy
switches one of the application’s allocation from N to R
as R becomes more and more attractive with its increasing
computation speed (or wireless bandwidth).

V. CONCLUSION
The integration of mobile and cloud computing promises the
user with convenient access to powerful applications at any
time and at any where. The research of computation offload

andmigration plays an essential part in this vision and ensures
that this integration process is both seamless and efficient.
In this paper, we investigate the efficiency of application
offload in mobile cloud computing. We especially focus on
the competition between mobile cloud applications residing
on the same device which is overlooked by existing research
under the topic.

Our main contribution is the game theoretic modelling of
the non-cooperative offload gamewith complete information.
This model is an extension to the classic load balancing
game. We present detailed derivation of the mixed-strategy
Nash equilibrium of this game. To compare the system’s per-
formance at equilibrium with existing computation offload
mechanisms, we also model existing offload decision pro-
cesses as a non-cooperative offload game with symmetrically
incomplete information. Furthermore, we propose a coopera-
tive scenario and solve the offload decision problem as a min-
max integer program to obtain optimal offload schedules.

We compare the performance of all three offload deci-
sion models with a series of simulation experiments. On an
application level, we observe the counterintuitive strategy
decisions made by applications in the complete information
game which help understand application behaviours when no
global control is applied. On a system level, we discuss the
price of anarchy in non-cooperative scenarios. We show that
significant reduction in social cost can be obtained in a coop-
erative setting. The dependencies between price of anarchy
and various system parameters are also investigated.We show
that high deviation in application weights encourages high
price of anarchy in non-cooperative scenarios.

Our study demonstrates the importance of recognising
the potential competition between mobile cloud computing
applications, and provide a suite of modelling tools to simu-
late and solve the offload decision problem in ecosystems of
mobile cloud computing applications.
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APPENDIX
DERIVATION OF pR

i
When a game is in a state of mixed-strategy equilibrium, we
have E[cRi ] = E[cNi ]. This with (6) we get

E[CR]+ (1− pRi )
(
wdi
sdR
+
wbi
sbR

)
= E[CN]+ (1− pNi )

(
wdi
sdN
+
wbi
sbN

)
= E[CN]+ pRi

(
wdi
sdN
+
wbi
sbN

)
pRi

(
wdi
sdN
+
wbi
sbN
+
wdi
sdR
+
wbi
sbR

)
−

(
wdi
sdR
+
wbi
sbR

)
= E[CR]− E[CN] (22)

For applications that are fixed to run on either N or R, i.e.
i ∈ [n]N ∪ [n]R we define

C f
j =

∑
i∈[n]j

(
wdi
sdj
+
wbi
sbj

)
, j ∈ {N,R} (23)

Take this into (4) we have

E[CN] = C f
N +

∑
i∈[n]−[n]N

pNi

(
wdi
sdN
+
wbi
sbN

)

and

E[CR] = C f
R +

∑
i∈[n]−[n]R

pRi

(
wdi
sdR
+
wbi
sbR

)
(24)

Take these into (11) we have

E[CN] = C f
N +

∑
i∈[n]−[n]N

aNi

(
E[CN]− E[cNi ]+

(
wdi
sdN
+
wbi
sbN

))
(25)

E[CR] = C f
R +

∑
i∈[n]−[n]R

aRi

(
E[CR]− E[cRi ]+

(
wdi
sdR
+
wbi
sbR

))
(26)

Take a difference between these two equations we have

E[CR]− E[CN] = C f
R − C

f
N + |[n]

H
|(E[CR]− E[CN])

+

∑
k∈[n]H

(
wdk
sdR
+
wbk
sbR

)
−

(
wdk
sdN
+
wbk
sbN

)
(27)

E[CR]− E[CN] =
(
C f
R − C

f
N +

∑
k∈[n]H

(
wdk
sdR
+
wbk
sbR

)

−

(
wdk
sdN
+
wbk
sbN

))/(
1− |[n]H|

)
(28)

Finally, compare this with (22) we get

pRi

(
wdk
sdN
+
wbk
sbN
+
wdk
sdR
+
wbk
sbR

)
−

(
wdk
sdR
+
wbk
sbR

)
=

(
C f
R − C

f
N +

∑
k∈[n]H

(
wdk
sdR
+
wbk
sbR

)
−

(
wdk
sdN
+
wbk
sbN

))
/(

1− |[n]H|
)

(29)

pRi =
(
wdi
sdR
+
wbi
sbR

)/(
wdi
sdN
+
wbi
sbN
+
wdi
sdR
+
wbi
sbR

)
+

(
C f
R − C

f
N +

∑
k∈[n]H

(
wdk
sdR
+
wbk
sbR

)
−

(
wdk
sdN
+
wbk
sbN

))
/((

1− |[n]H|
)(

wdi
sdN
+
wbi
sbN
+
wdi
sdR
+
wbi
sbR

))
. (30)
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