18th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems, 05 November, 2015, Cancun, Mexico

Modelling the Bandwidth Allocation Problem in Mobile Service-Oriented Networks

Bo Gao and Ligang He

Department of Computer Science, University of Warwick, UK

Outline

- The problem
 - Mobile Service-Oriented Networks (MSONs)
 - Service Bandwidth Dependency and Allocation
- Solution
 - Leontief Input-Output Model (Economics)
 - Network I-O Model (MSONs)
- Results

Mobile Service-Oriented Networks

Mobile Service-Oriented Networks

Bandwidth Dependency? Allocation?

Mobile Service-Oriented Networks

 H. T. Cheng, H. Shan, and W. Zhuang, "Infotainment and road safety service support in vehicular networking: from a communication perspective," *Journal* of Mechanical Systems and Signal Processing (MSSP, Elsevier), in revision.

Exchange of Goods and Services in the U.S. for 1947 (in billions of 1947 dollars)

		Agriculture	Manufacturing	Services	Open Sector
ľ	Agriculture	34.69	4.92	5.62	39.24
ľ	Manufacturing	5.28	61.82	22.99	60.02
	Services	10.45	25.95	42.03	130.65
-	Total Gross Output	84.56	163.43	219.03	

Exchange of Goods and Services in the U.S. for 1947 (in billions of 1947 dollars)

	Agriculture	Manufacturing	Services	Open Sector
Agriculture	34.69	4.92	5.62	39.24
Manufacturing	5.28	61.82	22.99	60.02
Services	10.45	25.95	42.03	130.65
Total Gross Output	84.56	163.43	219.03	

Exchange of Goods and Services in the U.S. for 1947 (in billions of 1947 dollars)

	Agriculture	Manufacturing	Services	Open Sector
Agriculture	34.69	4.92	5.62	39.24
Manufacturing	5.28	61.82	22.99	60.02
Services	10.45	25.95	42.03	130.65
Total Gross Output	84.56	163.43	219.03	

consumption matrix

 $C = \begin{bmatrix} .4102 & .0301 & .0257 \\ .0624 & .3783 & .1050 \\ .1236 & .1588 & .1919 \end{bmatrix} \quad \mathbf{d} = \begin{bmatrix} 39.24 \\ 60.02 \\ 130.65 \end{bmatrix}$

demand vector

Exchange of Goods and Services in the U.S. for 1947 (in billions of 1947 dollars)

	Agriculture	Manufacturing	Services	Open Sector
Agriculture	34.69	4.92	5.62	39.24
Manufacturing	5.28	61.82	22.99	60.02
Services	10.45	25.95	42.03	130.65
Total Gross Output	84.56	163.43	219.03	

consumption matrix

$$C = \begin{bmatrix} .4102 & .0301 & .0257 \\ .0624 & .3783 & .1050 \\ .1236 & .1588 & .1919 \end{bmatrix} \quad \mathbf{d} = \begin{bmatrix} 39.24 \\ 60.02 \\ 130.65 \end{bmatrix}$$

x - Equilibrium Production Level

$$\mathbf{x} = C\mathbf{x} + \mathbf{d}$$

demand vector

$$\mathbf{x} = (I - C)^{-1}\mathbf{d} = \begin{bmatrix} 82.40 \\ 138.85 \\ 201.57 \end{bmatrix}$$

Modern industry ecosystem

 $\mathbf{x} = C\mathbf{x} + \mathbf{d}$

I-O Models in

Economics	(M)SONs			
Similarities				
Sectors	Services			
Consumers	Users			
Commodity	Data			
Currency	Bandwidth			
Differences				
Do receiving cost	Downlink and Uplink Costs			
Sectors are all independent	Co-Located Services			

I-O Models in

Economics	(M)SONs	
Differences		
Do receiving cost	Downlink and Uplink Costs	
Sectors are all independent	Co-Located Services	

$$x$$
 = Ax + d production intermediate demand external demand

 $downlink\ cost \quad \ relayed\ downlink\ demand$

$$\omega_{ij} = \begin{cases} 0 & \text{if } \Theta(s_i) = \Theta(s_j), \\ 1 & \text{otherwise.} \end{cases}$$

Application of Network I-O Model

I-O Based Adaptive Model

$$\min_{\check{\boldsymbol{\lambda}}} \quad \|\boldsymbol{\lambda} - \check{\boldsymbol{\lambda}}\|_{2}$$
s.t.
$$(A^{\uparrow} - I)\check{\boldsymbol{x}}^{\uparrow} + \check{\boldsymbol{\lambda}} \circ \boldsymbol{\beta} \circ \boldsymbol{\rho} = \mathbf{0}$$

$$A^{\downarrow}\check{\boldsymbol{x}}^{\uparrow} - \check{\boldsymbol{x}}^{\downarrow} = \mathbf{0}$$

$$\check{b}_{m} = \sum_{i} \check{x}_{i}^{\uparrow} + \sum_{i} \check{x}_{i}^{\downarrow}, \quad \Theta(s_{i}) = m$$

$$\check{b}_{m} \leq b_{m}, \quad m \in \{\mathbb{M} - \mu\}$$

$$\check{b}_{\mu} \leq \check{B}_{\mu}$$

s.t.
$$(A^{\uparrow} - I)\check{\boldsymbol{x}}^{\uparrow} + \check{\boldsymbol{\lambda}}' \circ \boldsymbol{\beta} \circ \boldsymbol{\rho} = \mathbf{0}$$

 $\check{\lambda}'_i = \lambda_i, \quad \Theta(s_i) = \mu$

s.t.
$$(A^{\uparrow} - I)\check{\boldsymbol{x}}^{\uparrow} + \check{\boldsymbol{\lambda}}^{"} \circ \boldsymbol{\beta} \circ \boldsymbol{\rho} = \mathbf{0}$$

 $\check{\lambda}_{i}^{"} = \lambda_{i}, \quad \Theta(s_{i}) \neq \mu$

Application of Network I-O Model

Summary

- Mobile Service-Oriented Networks
- Extend Leontief's I-O Model in Economics to a Network I-O Model
- Application of Network I-O Model

Thank you

Bo Gao

Department of Computer Science, University of Warwick, UK. bogao@dcs.warwick.ac.uk

