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Abstract—Mobile cloud computing is an emerging field of
research which aims to provide a platform on which intelligent
and feature-rich applications are delivered to the user at any time
and at anywhere. When such a cloud-assisted mobile application
workflow requires the cooperation of many devices, solving the
task allocation problem becomes a critical step in ensuring the
energy efficiency of the mobile cloud platform. In this paper,
we construct a quadratic binary program to model the task
allocation problem in such scenarios. In order to overcome the
poor scalability of generic quadratic program solvers, we present
an implementation of the simulated annealing algorithm and a
greedy autonomous offload algorithm to approximate the optimal
solution. Both heuristics are tailored to solve our task allocation
problem efficiently. We verify and compare our algorithms
against a commercial quadratic program solver in a series of
simulations. Results show that both heuristics produce good
solutions to the task allocation problem. Solutions provided by
our greedy algorithms is consistently close to optimal and can be
obtained in a more time efficient manor than our implementation
of the simulated annealing algorithm.

I. INTRODUCTION

Despite the rapid development of mobile computing tech-
nologies, battery power remains a limiting factor in the de-
velopment of mobile applications. With increasingly more
complex functionality required from the user, developments
of mobile applications remain largely energy-constrained [1].
One solution given by researches under the broad topic of
Mobile Cloud Computing [2], [3], also referred to as Cloud-
Based and Cloud-Assisted mobile computing [4], is to utilise
cloud resources as task offload or migration targets in order
to reduce the energy burden imposed on the mobile devices
involved in the application workflow.

A cloud-assisted mobile workflow as we discuss in this
paper is an application workflow that is implemented over a
group of mobile devices with access to cloud resources. The
cloud resources may either be a compulsory component in the
execution of the workflow, or be in an assistant role to handle
computation offload requests sent from the mobile devices.
Mobile application workflows can be found when a group of
mobile users are to share or communicate with each other
in order to accomplish a certain task. We give two example
use cases of such workflows in Fig. 1 to further clarify our
objective.

Ligang He is the corresponding author.

Enterprise use case: With increasing adaptation of mobile
devices into enterprise business models [5], modern enterprise
applications often include or are entirely based on mobile
devices. Figure 1 (a) illustrates an application workflow involv-
ing three mobile devices and two cloud services of a supply-
chain business. Two employees are concerned with the receipt
and sale of goods respectively. Both activities require an up to
date pricing information at runtime. A manager is concerned
with the trends that are developing in the company’s inventory
in real-time which is produced via a series of tasks like forecast
and analysis.

There are two types of tasks in this workflow: tasks like
login, record sale and database queries that are fixed either
on a mobile device or a cloud node; and tasks like data
analysis and forecast that can be offloaded / migrated between
devices and clouds. Depending on the computation size and
communication size of these offload-able tasks, an energy-
aware allocation scheme can help optimise the execution of
the workflow in term of its overall energy cost imposed onto
the mobile cloud platform.

Consumer use case: Because of its portability, mobile de-
vices encourages the development of collaborative application.
In Figure 1 (a), we illustrate the collaboration of three mobile
devices in scanning the 3D structure of an object. Pictures of
the object is taken on all three devices at the same time and
once pre-processed, these pictures are gathered to construct
the 3D model of the object. Two cloud services are available
to the users, one for storage and one for application hosting
and computation offloading.

Similar to the enterprise use case, the tasks involved in this
mobile application workflow can either be fixed or offload-
able over the mobile cloud platform. Allocation of tasks
is critical in deciding the energy-footprint of the workflow.
For instance, once the picture has been pre-processed, the
subsequent communication size may be reduced. Comparing
this reduction to the computation cost of the pre-processing
task on the mobile device, it may or may not be beneficial for
the device to offload this task to the cloud.

Our research investigates ways to model and optimise the
energy efficiency of such workflows running atop a platform
of mobile and cloud devices. Our goal is to develop ways to
produce energy-aware task allocation schemes and provide an
energy efficient execution platform for cloud-assisted mobile
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Figure 1: Example use cases of cloud-assisted mobile application workflows. Solid circles represent tasks that are fixed on a
device or a cloud service, whereas dashed circles represent tasks that are free to offload / migrate between devices and clouds.

workflows. We discuss related work in the field of mobile
cloud computing in the next section. We then model the
energy-aware task allocation problem as a quadratic binary
program in section III. Two heuristic algorithms are developed
in section IV that are tailored to overcome the scalability
issue of a standard quadratic program (QP) solver. A series of
simulation results are then presented and analysed in section V
to verify and analyse the solutions produced by our algorithms
before conclusions are drawn in the last section.

II. RELATED WORK

The idea of transferring computation to nearby (in terms of
network connectivity) processing unit to facilitate the reduc-
tion in energy cost of mobile devices has been researched
along with the maturity of mobile technologies. Pioneered
by the likes of MAUI [6], CloneCloud [7] and ThinkAir
[8], adaptive computation offload as a core technology in
mobile cloud computing has gathered momentum in recent
years and has grown from a futuristic concept to a practical
means to improve and augment the user experiences of mobile
applications. We recommend two excellent surveys, [3] and
[9], to the interested readers for a comprehensive list of
existing implementation of computation offload / migration
between mobile and cloud.

Our research targets scenarios where several devices and
clouds support the execution of workflows. This is an exten-
sion to existing researches in mobile cloud computing. Exist-
ing techniques like MAUI [6], CloneCloud [7] and ThinkAir
[8] focuses on the cooperation between one mobile device and
one cloud server. Thus a common approach towards the task
allocation problem is to model the problem as a linear program
[6] [10]. A linear program is suitable for modelling situations
where communication time is not considered or when there
are only two devices involved in the process. However, in
the cases of mobile workflows, communication tasks are an
essential part of the workload and occurs significant amount
of energy cost [11]. Thus we construct our model’s objective
function as a quadratic program in order to accurately capture
the communication costs between devices.

In [12], an energy-aware task allocation scheme is devel-
oped for mobile-only platforms. We extend the platform to
include cloud resources which are more suitable and realistic
as computation offload targets. We also develop heuristics to
overcome the scalability issues of solving the quadratic pro-
gram. Execution of our allocation algorithms is to be carried
out by the workflow engine which oversees the execution
of mobile workflows. In [13] a detailed mobile workflow
engine is implemented and tested on Nokia devices. A de-
centralised workflow coordination architecture designed for
mobile devices is presented in [14] for use in biological studies
and the supply-chain industry. Authors of [15] propose a
rapid application development framework based on a dynamic
workflow engine for creating mobile web services.

III. ENERGY-AWARE MOBILE CLOUD PLATFORM MODEL

A. Hardware and Network Metrics

We consider a mobile cloud platform MCP consisting of a
set of p processing nodes, denoted P = {P1, · · · , Pp}. Each
processing node may either be a mobile node from set PM ⊆
P or a cloud node from set PC ⊆ P , with PM ∩PC = ∅ and
PM ∪PC = P . We characterise each processing node Pi ∈ P
with the following metrics:

si CPU speed of Pi, measured in the number of
clock cycles available in a second;

ecmpi Current draw from the battery of Pi ∈ PM when
its CPU is running, measured in mAh;

e
snd/rcv
i Current draw from the battery of Pi ∈ PM when

the device is sending/receiving data to/from the
wireless network, measured in mAh;

emnti Current draw from the battery of Pi ∈ PM when
the device is maintaining the wireless connection
alive to anticipate transmission of data, measured
in mAh.

All nodes (Pi ∈ P ) are interconnected via a network, and we
use bij and lij to denote the bandwidth and latency between
devices Pi and Pj . Thus, we have p-matrices B = (bij)p×p



and L = (lij)p×p to hold all of the bandwidth and latency
information of the underlying network of the MCP. When two
adjacent tasks are assigned to the same device, we assume
that they share the same memory address space on the device.
Therefore, we assign positive infinite values to the principal
diagonal elements of B, that is bii = +∞, i ∈ P , and zeros
to the principal diagonal elements of L, that is lii = 0, i ∈ P .

Our choice of hardware energy metrics is in line with
researches that investigate the energy consumption of mobile
devices [16]–[19] especially for the wireless module. In our
model, we emphasis the difference in energy consumption
between the sender and the receiver of the data, and that
it cost energy to maintain a live connection in anticipation
of data transmission. We refer the interested reader to [20]
for a comprehensive survey in energy measurement models of
mobile smart devices.

B. Application Workflow Metrics

Application workflows hosted on an MCP is represented
by a directed graph W = (T,R) whose vertex set T =
{t1, . . . tn} denotes the set of tasks of the workflows. An n-
matrix D = (dab)n×n denotes the weighted adjacency matrix
of W , where dab is the size of the data package that is to
be sent from ta to tb for (ta, tb) ∈ R. All principle diagonal
elements of D are zeros.

Each task has a profile ta
(
d(.a), d(a.), ca

)
, a ∈ {1, . . . n}

where d(.a) and d(a.) are the a-th column and the a-th row
of D which represent the incoming and outgoing data of
ta respectively. ca denotes the size of the workload of ta,
measured in the number of clock cycles required by ta.

C. Fixed and Constrained Tasks

Not all tasks of a mobile workflow are suitable for offload
from its host. For instance, a task that authenticates the user’s
identity using the fingerprint reader on the smartphone has to
be executed on the smartphone; a task that manages database
files saved on a cloud-storage service has to run locally on
that cloud; a task which senses the user’s heartbeat must run
on the smart-watch, etc. These tasks are fixed on their hosts.

Furthermore, there may be tasks that are only allowed to
be executed on a subset of P . For instance, when a task is
associated with sensitive data shared between a group of users,
or when the OS of each device varies in versions such that
the execution of certain tasks are not supported by all of P .
These tasks are constrained within a group of devices.

We denote the set of devices that a task ta may execute on
with P ta . For a fixed task, P ta has a cardinality of one and
contains only its host. For a task which is not at all constrained,
P ta = P .

D. Allocation Scheme and Energy Costs

Given an allocation scheme ψ : T → P , we first derive the
energy cost of computing ta ∈ T to be

Ecmpaψ(a) = ecmpψ(a) ×
ca
sψ(a)

(1)

where ψ(a) is the device to which ta is assigned. Secondly,
we have the energy cost of transferring dab, (ta, tb) ∈ R as
given by (2).

To represent an allocation scheme ψ, we first construct an
n× p binary matrix Xψ =

(
xψai

)
n×p

, such that

xψai =

{
1 if ψ(a) = i, ta ∈ T, Pi ∈ P
0 otherwise.

(3)

We refer to matrix Xψ as an assignment matrix and a valid
assignment must satisfy the following constraints∑

Pi∈P ta
xψai = 1, a = 1, 2, . . . , n, (4)

xψai ∈ {0, 1} , a = 1, 2, . . . , n, i = 1, 2, . . . , p. (5)

(4) ensures that every task must be assigned to one and only
one device within the group of devices which it is able to
execute. (5) states that all tasks are indivisible.

E. Quadratic Program Formulation

With (1) (2) and (3), we derive the energy cost of the MCP
under allocation scheme ψ as (6). The quadratic term in (6)
gives the energy cost for the communications between tasks,
whereas the linear term gives the energy cost for the execution
of tasks. Next we introduce (pn)2 coefficients qaibj as given
by (7). With (7) we transform (6) to

minimise: Eψ =

n∑
b=1

p∑
j=1

n∑
a=1

p∑
i=1

qaibjx
ψ
aix

ψ
bj (8)

as the objective function of our quadratic program. Let co-
efficients qaibj be the entries of a pn × pn matrix Q, such
that qaibj is at row (i− 1)n + a and column (j − 1)n + b,

and vec(Xψ) =
(
xψ11, x

ψ
12, . . . , x

ψ
1n, x

ψ
21, . . . , x

ψ
pn

)T
be the

vector formed from the columns of Xψ . It is easy to see that
equivalent formulations are given by (8) and

minimise: Eψ = vec(Xψ)T ·Q · vec(Xψ) (9)

Therefore (9) constrained by (4) and (5) constitutes a quadratic
program whose objective is to derive a task allocation scheme
ψ to minimise the energy cost of the MCP. The assignment
matrix which specifies ψ is given by

arg min
Xψ

(Eψ) (10)

IV. HEURISTICS

Amongst all combinatorial optimisation problems, a binary
quadratic program is one of the hardest to solve [21]. Despite
the development of modern quadratic program (QP) solvers,
finding the global optimal solution of a QP remains a com-
putational difficult task. When the problem size gets bigger
(p × n > 200 in our experience on a laptop with a first
generation Core i7 processor and 8GB of memory), finding the
exact optimal solution is time consuming. In MCP scenarios,
hardware metrics like a mobile device’s bandwidth changes



Etranabψ(a)ψ(b) = esndψ(a) ×
dab

bψ(a)ψ(b)
+ emntψ(a)lab︸ ︷︷ ︸

sender’s cost

+ ercvψ(b) ×
dab

bψ(a)ψ(b)
+ emntψ(b)lab︸ ︷︷ ︸

receiver’s cost

(2)

Eψ =

n∑
b=1

p∑
j=1

n∑
a=1

p∑
i=1

(
(esndi + ercvj )

dab
bij

+ (emnti + emntj )lab

)
xψaix

ψ
bj +

n∑
a=1

p∑
i=1

ecmpi

ca
si
xψai (6)

qaibj :=



ecmpi

ca
si

+ (esndi + ercvj )
dab
bij

+ (emnti + emntj )lab︸ ︷︷ ︸
=0

if (a, i) = (b, j),

esndi

dab
bij

+ emnti lab a < b,

ercvj
dba
bij

+ emntj lab a > b.

(7)

by the second. It is impractical to rely on QP solvers for
the development of task allocation schemes. Therefore in this
section, we present two heuristics to approximate the solutions.

Note that in both heuristics, we assume that an allocation
scheme ψ0 is currently in place to schedule all tasks on the
MCP. Also, some of the notations we use to present the
algorithms in this section like t, T, c and p are not to be
confused with the notations we used to construct the model in
section III.

A. Simulated Annealing

Simulated annealing (SA) [22], [23] is a meta-heuristic
algorithm commonly applied to NP-hard combinatorial op-
timisation problems. One of the main features of simulated
annealing is that by occasionally allowing inferior solutions
on its search path, the algorithm is able to perform uphill
search steps so that its solution needs not get stuck at local
optimal points.

The algorithm has a simple structure. As illustrated in
Algorithm 1, the main procedure has two nested loops. The
outer loop (line 4 - 17) iterates for a number of cycles. Each
cycle corresponds to a temperature T which is trialed in
the inner loop (line 5 - 15) and cooled by a cooling ratio
(0 < Tc < 1) at the end of each cycle. At the start of
the inner loop, a candidate (ψ′) is randomly choosen from
the local neighbourhood of the current solution (ψ∗). This
candidate is then accepted as the best solution either through
the fact that it improves the value of our objective function or
with probability min{1, exp(−|Eψ′ − Eψ∗ |/T )} regardless of
whether it improves the objective function or not.

Next, we discuss details of our implementations of the
simulated annealing algorithm.

1) Cooling Schedule: The use of the exponential function
(line 10) in the simulated annealing algorithm means that
the probability (p) of a candidate / incumbent solution (ψ′)
being accepted is directly related to the temperature (T ) of
each cycle. The higher the temperature, the higher the chance

of an inferior candidate solution may be accepted. Likewise,
following the cooling (reduction) of T at the end of each
cycle, the probability of an inferior solution being accepted
by the algorithm is gradually reduced towards the end of the
algorithm.

Because of this property, the performance of an implemen-
tation of the simulated annealing algorithm greatly depends
on its choice of a cooling schedule. On one hand, the initial
temperature must be high enough such that the final solution
is independent from the initial solution (ψ0). A low initial
temperature constraints the development of the solution by
assigning low or zero probability to inferior solutions from the
start of the algorithm. On the other hand, the exit temperature
needs to be small enough so that the development of the final
solution is adequately constrained by the algorithm. A solution
produced by a high exit temperature is less refined and may
be randomly further away from the optimal solution.

In our implementation of the simulated annealing algorithm
we set the initial and exit temperature as T0 = (log(p0))−1

and Te = (log(pe))
−1 where p0 and pe are the initial and

exit acceptance probabilities that we set out. Then we have
Tc = (Te − T0)

1
NumberOfCylces−1 to complete the cooling

schedule. We also normalise |Eψ′ − Eψ∗| by its averages in
each cycle at line 10. To preserve the essential structures of a
simulated annealing algorithm, fine tunings of the algorithm
are not presented in detail in Algorithm 1.

2) Calculating |Eψ′ − Eψ∗|: In each trial of the algorithm,
the energy cost of the candidate solution (Eψ′) is to be
calculated (line 10). Therefore its calculation is crucial to the
time complexity of the algorithm as a whole. Because Q is of
size (pn)2, the calculation of Eψ′ using (9) becomes a time
consuming task with increases in either p or n or both. In
our experience, as the complexity of the problem increases,
it becomes less feasible to apply the heuristic than that of an
MIQP solver if (9) is used to calculate Eψ′.

To overcome this issue, we observe the following:



Eψ′ − Eψ∗ = Q(j−1)n.vec(X
ψ′) +Q.(j−1)nvec(X

ψ′)T −Q(i−1)n.vec(X
ψ∗)−Q.(i−1)nvec(Xψ∗)T (11)

Theorem 1. If ψ′ is the allocation scheme which alters only
the assignment of a ∈ T from i to j (with i, j ∈ P ) when
compared with ψ∗, then Eψ′ − Eψ∗ is given by (11) where
Q(j−1)n. and Q(i−1)n. denote the (j−1)n-th and the (i−1)n-
th row of Q, Q.(j−1)n and Q.(i−1)n denote the (j − 1)n-th
and the (i− 1)n-th column of Q respectively.

Proof: Observe that an allocation matrix X has only
binary values and that when one application changes allocation
from ψ∗ to ψ′, only a pair of values of that allocation matrix is
exchanged. Apply these observations to (9), the reader should
not find it difficult to come to (11).

With (11), we are able to reduce the time complexity of
calculating |Eψ′−Eψ∗| from a complexity that is greater than
O((pn)2) for multiple vector-matrix multiplications to O(pn)
for the sum of vector dot products.

Algorithm 1 Simulated Annealing

1: procedure SANNEALING(ψ0, Q)
2: T ← T0
3: ψ∗ ← ψ0

4: for c← 1, NumberOfCycles do
5: for t← 1, NumberOfTrials do
6: ψ′ ← local(ψ∗)
7: if Eψ′ < Eψ∗ then
8: ψ∗ ← ψ′

9: else
10: p = exp(−|Eψ′ − Eψ∗ |/T )
11: if p > rand(0, 1) then
12: ψ∗ ← ψ′

13: end if
14: end if
15: end for
16: T = T × Tc
17: end for
18: return ψ∗

19: end procedure

B. Greedy Autonomous Offload

Heuristics that are used in the literature to approximate
QPs like simulated annealing (SA) often share a common
evolution-like structure which iteratively improves on a best-
known result. The optimality of the final solution is often
dependent on the number of iterations the algorithm is allowed
to run. In an MCP environment, workflows need to be nimble
and adaptable to the constantly changing network conditions
of mobile devices. It is often not practical to let the algorithm
running for a large number of iterations. Therefore in the
design of our second heuristic, we take a step back from the
established algorithms and aim to build an algorithm that is
most practical to the MCP.

Algorithm 2 Greedy Autonomous Offload

1: procedure GAO-MAIN(ψ0, Q)
This procedure is executed by the workflow engine, trig-
gered by the changes in network conditions or periodi-
cally.

2: ψ′ ← ψ0

3: repeat
4: ψ∗ ← ψ′

5: for d ← 1, |PM | do
6: ψ′d ←GAO-DEVICE(d, ψ′)
7: end for
8: ψ′ ← Reduce (ψ′d)
9: until MaxIterations or ψ′ == ψ∗

10: return ψ′

11: end procedure

12: procedure GAO-DEVICE(d, ψ′)
This procedure may either execute on the mobile devices
or on the workflow engine.

13: c←BestConnectedCloud
14: ∆E∗ = 0
15: ψ′Me.ID ← ψ′

16: for all a ∈Me.Offloadables do
17: ψ′′ ← ψ′Me.ID

18: ∆E = Eψ
′′(a)=c

Me.ID - Eψ
′′

Me.ID

19: if ∆E > ∆E∗ then
20: ψ′Me.ID(a)← c
21: end if
22: end for
23: ψ′(a)← c
24: return ψ′Me.ID

25: end procedure

In the design of this heuristic, as shown in Algorithm 2, we
emphasis on the core feature of an MCP which is computation
offload (or migration) from mobile to cloud. On a workflow
level, the adjustment to the initial allocation scheme is carried
out in rounds (line 3 to 9) triggered either by changes in
MCP or periodically. On a device level, we first associate each
mobile device with the cloud which it has the best connection
with (line 13). Then all tasks currently located on this device
and are not fixed to this device is measured against each other
in terms of the energy savings that may occur if it is offloaded
to this designated cloud (line 16 to 22). This constitutes the
device-level decision making process of our algorithm.

The first procedure of the algorithm is the main function
of GAO. All devices from |PM | are allowed to offload
computation in each iteration until no device is able to reduce
its energy cost any further.

We refer this heuristic as the Greedy Autonomous Offload



(GAO) algorithm. This algorithm is greedy in that each device
offload the one most “profitable” task to the most “promising”
location known to it. This means that the algorithm is quick
and cheap (in terms of energy cost) to execute on the device.
Although it does not apply exhaustive search methods for the
optimal offload scheme, it produces good result which we
demonstrate in the next chapter. As a possible extension to
this algorithm we could model the per-device offload decision
as an integer program as in [6] to obtain the optimal solution.

This algorithm is autonomous since it allows each device to
make its own offload decisions independently. This is due to
the fact that the device-level procedure (line 6) of the algorithm
may execute locally on mobile devices. Note that although
ψ′ is requested by the procedure as input, this does not
create any extra communication workload for the devices. The
communication of ψ′ between the devices and the workflow
engine is requested to guide the execution of the workflow
regardless of any offload requests. Once an offload decision
has been made on the device, only the difference between
ψ′ and ψ′Me.ID is to be returned at line 24. This autonomous
behaviour also mimics the cooperation of mobile devices when
each is equipped with one-to-one mobile cloud computing
offload schemes as suggested by [6], [7], [24].

Another benefit of the greedy autonomous structure is that
the task allocation decision engine is able to react to the
changing network conditions more efficiently. For instance,
when a device is temporarily cut-off from the MCP network,
the workflow engine may pause the procedure and wait for the
device to come back online. Depending on the new connection
speed that device has to the MCP when it recovers, the
workflow engine can decide whether to restart the whole
procedure or continue the existing procedure. Likewise, when
a new cloud resource become available on the MCP, the
device can adjust its favourite offload destination and revise
its decisions.

V. SIMULATIONS

In this section, we carry out simulation studies to verify and
compare the results produced by the proposed algorithms. We
give details of the hardware and software parameters used in
the simulations first before simulation results are presented.

A. MCP Construction

While it is intractable to cover all possible use cases of
mobile cloud platforms, we aim to base our simulation closely
to the characteristics of an average modern mobile device with
a wireless connectivity typically ranged within the capacities
of existing wireless technologies (e.g. WiFi, 3G and LTE).
On a hardware level, we construct our simulation with two
building blocks: a typical mobile device and a typical wireless
connection:

Definition 1. A typical mobile device has a battery capacity
of 2000mAh, draws a current of 200-300mA during data
transmission (with uplink drawing 20% more current than
downlink) and 100-200mA when executing local computation
tasks.

Table I: Comparison of Algorithms - Time

Simulation groups† Algorithm time in seconds (ratio)

ID |P |(|PC |) |T |/|R| SA GAO Optimal

S0 10(2) 60/90 0.46 (1.86) 0.04 (0.14) 0.24 (1)
M0 20(2) 120/180 0.69 (0.25) 0.12 (0.04) 2.77 (1)
L0 30(4) 180/270 1.22 (0.17) 0.39 (0.05) 6.82 (1)
X0 40(4) 240/360 2.73 (0.13) 0.96 (0.04) 20.28 (1)

† - Each group contains 100 tests the average of which is presented.

Definition 2. A typical wireless connection has an uplink
bandwidth of 2-10Mbps, and a latency of 10-50ms.

The values in Definition 1 are based on the data presented
in recent researches [11], [20], [25]–[27]. Characterisation of
energy consumptions in smart devices and wireless networks
is a challenging research topic. Because of the rapid devel-
opment of new devices and emerging network standards, it is
unrealistic to associate exact quantities to activities on mobile
smart devices. Therefore, we use value ranges to characterise
the energy consumptions of devices and networks in Definition
1 to simulate the variety of devices and power characteristics
which may exist in a mobile cloud computing environment.
We also used the tools presented in [18] to verify the values
used in the definition. The network data in Definition 2 is
based on the combination of 3G and LTE data presented in a
recent report produced by Ofcom [28].

Likewise, on an application workflow level, we construct
our simulation with two basic unit workloads:

Definition 3. A task, ta ∈ T , has a unit computation workload
if its execution, ca, takes 1 second to complete on a typical
device.

Definition 4. Two tasks, {ta, tb} ⊆ T, (ta, tb) ∈ R, have a
unit communication workload if the size of the data sent from
ta to tb, dab, takes 1 second to complete on a typical wireless
connection.

In our simulation, we specify each task’s workload size
using multiples (uniformly distributed over [1, 20]) of a unit
computation workload and a unit communication workload.
The size of W of each simulation group is as specified in the
first half of Table I.

To produce an initial baseline allocation scheme (ψ0) we
apply a baseline algorithm which attempts to reduce the
total energy cost by distributing the number of tasks evenly
across the MCP including both mobile and cloud nodes. This
algorithm provides a good baseline value because although it
does not seek the benefit of using an energy efficient device,
its chance of being able to take that advantage is consistent.

B. Results and Analysis

1) Solution Quality: We now compare the quality of the
solutions produced by both of our heuristics, SA and GAO,
against the optimal solutions produced by a commercial QP
solver (CPLEX v12.6.1). We plot the results from S0, M0, L0
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Figure 2: Comparison of algorithms: Solution quality.

and X0 in Fig. 2. Each of the four plots in the figure illustrates
the quality of the allocation schemes (Eψ) produced by our
heuristics and the optimal allocation schemes produced by the
QP solver in each of the four simulation groups. Note that we
plot the results in ascending order of its optimal (minimum)
energy cost as given by the QP solver so that the results
are easier to read. This does not indicate any trends in our
simulation settings. We also normalised the results so that the
results from each simulation may be compared to each other.

When developing energy-aware task allocation schemes, our
objective is to minimise the amount of energy cost of the MCP.
From all four plots of Fig. 2, we see that in all four (S0, M0,
L0 and X0) groups of simulations, the proposed algorithms
are able to reduce Eψ to good extent. When the scale of the
problem is small, as in S0 and M0, the differences between
our heuristics and the solver is relatively small when compared
with simulations of larger scales, as in L0 and X0.

From Fig. 2, we see that the quality of the solutions
produced by GAO is consistently close to that of the optimal
solution in all four simulation groups. In comparison, the
solution quality of SA is gradually reduced as the scale of
the MCP increases from S0 to X0. This is largely due to

the fact that we keep the number of cycles and trials as a
constant in SA when producing allocation schemes for all
simulations. The quality of results produced by SA would have
been improved if larger values were applied to simulations of
larger sizes. However, such improvement would also increase
the execution time of the SA algorithm. As shown in Table I,
the SA algorithm takes longer to execute than GAO in all
simulations, therefore we opt to not increase the number of
cycles and trials in SA.

2) Algorithm Time: We give each algorithm’s average ex-
ecution time and their ratios to the QP solver’s execution
time in Table I. We see that GAO is superior than both other
algorithms in terms of execution time. In M0, L0 and X0, GAO
only takes 5% of the execution time of the QP solver. More
importantly, the execution time is kept under one second which
is acceptable for scheduling decisions in mobile application
workflows of the simulated scale. Our implementation of the
SA algorithm also has good scalability when compared to the
QP solver.

For small scale MCPs, as in S0 and M0, the time costs
of QP solver are also acceptable given that it produces the
optimal allocation schemes.



As a summary of our findings, we see that GAO is able
to produce good allocation schemes that are close to optimal
within a reasonable time frame. Its solution quality and
algorithm efficiency are significantly better than traditional
heuristics like SA in solving the energy-aware task allocation
problem in cloud-assisted mobile application workflows. It is
also possible to deploy both GAO and QP solvers at the same
time so that a good solution can be quickly produced and
adopted from GAO and the optimal solution may be adopted
at a later stage, provided no hardware or software metrics has
been modified significantly.

VI. CONCLUSION

Cloud-assisted mobile application workflows are becoming
ubiquitous in our everyday lives. Developing energy-aware
task allocation schemes in such a mobile cloud platform is
a critical step in ensuring the efficiency of such platforms.
In this paper, we first modelled the energy costs of a mobile
cloud platform with a quadratic binary program. We further
developed two heuristic algorithms to overcome the scalability
issues of quadratic program solvers. We tailored both algo-
rithms so that allocation schemes can be produced efficiently.
We verified and demonstrated the effect of our algorithms with
simulations of different scales. Simulation results show that
solutions that are close to optimal are consistently produced
by our greedy algorithm GAO efficiently. Our modelling
technique is also applicable to other energy critical scenarios.
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