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Figure 1: Example showing cloudlet and faster network 
connections improve battery life on mobile devices. 
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Abstract - Cloud computing and mobile computing are two of the 
most influential technologies that look set to change the face of 
computing in the coming years. Combination of the two provides 
us with an unprecedented opportunity to provide highly portable 
and yet content-rich and computation-intensive services to the 
end user. In this paper we investigate the possibility of using 
code/task offload techniques between mobile and cloud in order 
to reduce the energy cost of workflows deployed on mobile 
devices. We first present a vision in which mobile devices are 
coordinated over a network, which is equipped with a layer of 
cloud-like infrastructures which we term cloudlets, whose 
computational resources can be leveraged by the mobile devices 
to host the execution of mission-critical mobile workflows in an 
energy-aware manner. We then build a model that encompasses 
various characteristics of the workflow’s software and the 
network’s hardware devices. With this model, we construct the 
objective functions that guide the offload decisions. We then 
present a heuristic algorithm that produces statistical and 
dynamic offload plans according to these objective functions and 
their variations both statically and dynamically. We conclude the 
paper with a series of simulation studies, the results of which give 
insight into the offload-ability of workflows of different 
characteristics. The results also illustrate how different hardware 
specifications can affect offload efficiency. These studies indicate 
that our offload algorithm can significantly improve the energy 
efficiency and execution speed of mobile workflows. 

Keywords-Workflow; code offload; energy; mobile computing;  

I. INTRODUCTION 
A mobile workflow, as presented in this paper, consists of 

a sequence of interactive tasks that are deployed over a 
network of distributed mobile devices. As suggested in [1], an 
organisation is able to rely on the computing and connectivity 
capabilities within the mobile devices as a substitute to a 
technology back end server infrastructure. In [2], scenarios are 
used to demonstrate how a mass of mobile devices, each used 
as a rich sensor, can be used to solve real-life problems that 
could not have been solved by traditional methods. With the 
ability to collect and process data anywhere and at anytime, 
applications deployed over a network of mobile devices 
provide the user with much more flexibility than the 
traditional desktop-based work environments. 

Indeed, mobile devices are becoming the platform of 
choice for both enterprise and personal computing needs. It is 
predicted that by 2015, mobile application development 
projects will outnumber native PC projects by a ratio of 4:1 
[3]. In recent years, the mobile platform’s ability to enable 
ubiquitous access to services on the move has broadened the 
usability of many social and entertainment media and created 
great successes. 

With the rapid development of the smartphone and tablet 
market comes a new generation of handheld devices equipped 
with powerful processing units and high quality display units 
that have not been seen before in the mobile world. With this 
improved hardware capability, sophisticated, intelligent and 

mission-critical processes will be adapted from desktops to the 
mobile platform, and we also expect to see novel applications 
utilising the unique features of the devices developed for the 
mobile world. However, in order to achieve that goal, there 
are several technical challenges, including solutions to 
increase mobile devices’ battery life. In comparison to other 
components, the pace of advancement in improving the 
energy density of its battery has been slow [4]. Furthermore, 
gains made at a hardware level have often been taken up by 
extended software functionalities [5].  

In this paper, we look at code/workload offload to reduce 
the energy cost on mobile devices in the execution of mobile 
workflows. This approach is based on well-known methods 
adapted from the desktop environment. However, early 
research has been constrained by the lack of fast and 
ubiquitously accessible offload platform and thus has focused 
on partitioning programs statically [6] [7] [8].  

A new layer of network infrastructure called a cloudlet is 
the term used to capture the offload destination in this paper. 
The concept of a cloudlet was first introduced in [9] at the end 
of the last decade, and was subsequently discussed in [2] [10] 
and [11]. In [9], a cloudlet is described as a “data centre in a 
box” and is “self-managing, requiring little than power, 
Internet connectivity, and access control for setup.” In Figure 
1, we present an example in which a cloudlet is deployed next 
to a WiFi hotspot in a coffee shop that is accessible to the user 
of the second smartphone. In this example, we have a 
workflow that consists of four consecutive tasks deployed on 
four different devices. We assume that all tasks require the 
same amount of energy per second to run on their host devices 
and that the communications between each task are of the 
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same size. We also assume that no other application draws 
energy from these devices whilst the workflow is being 
executed. The workflow is run repeatedly, and we calculate 
the first phone’s battery to go flat first because its user is 
sitting in traffic and can only communicates with the other 
phones over a 3G connection, and its offload activity (if any) 
also has to go through a 3G connection ( 3G is more 
expensive than WiFi [12] [13] [14]). The second phone 
communicates with others over the coffee shop’s WiFi and is 
able to use its cloudlet to offload some of ��’s computation, 
and so its battery gets consumed the slowest. The user of the 
last handset has access to a WiFi hotspot whilst travelling on 
the train. However the train does not have a cloudlet deployed, 
so to offload ��’s computation it has to send the executables to 
a more distant cloudlet which takes longer to reach and thus 
consumes more energy. Note that in Figure 1, an enterprise 
cloud at the firm’s headquarters and a distant cloud service on 
the Internet are also available to support offload. These nodes 
may have faster processing speeds than the cloudlets. Offload 
to these clouds could prove more beneficial if the network 
connection is of high speed. 

In the remainder of this paper, we first discuss the related 
work and common approaches to implementing the mobile 
offload architecture; see section II. In III we present our 
offload model and discuss our algorithm with its features and 
variations. We conclude the paper with a parametric 
simulation study, see IV, in which we present the impact of 
different software and hardware metrics over the offload-
ability and effectiveness of a mobile workflow. 

II. RELATED WORK 
The idea of transferring computation to a nearby 

processing unit in order to improve mobile application’s 
performance and reduce local energy cost has been researched 
along with the maturity of mobile technologies. Many ideas 
and techniques we use in this paper are inspired by this work. 

Early research focuses on the partition schemes of an 
application. Aimed at energy management, a compile-time 
framework supporting remote task execution was first 
introduced in [8]. Based on the same approach, a more 
detailed cost graph was used in [7] with a parametric analysis 
on its effect at runtime presented in [15]. Another compiler-
assisted approach was introduced in [16], which turns the 
focus to reducing the application’s overall execution time. 
Spectra [17] adds application fidelity (a run-time QoS 
measurement) into the decision making process and uses it to 
leverage execution time and energy usage in its utility 
function. Spectra monitors the hardware environment at run-
time and choose between programmer pre-defined execution 
plans. Chroma [18] builds on Spectra but constructs the utility 
function externally in a more automated fashion. MAUI [11] 
also reduces the programmer’s workload by automating some 
of the partitioning-process models that its decision engine 
produces via integer programming techniques.  

Before Cloud, opportunistic use of surrogates (untrusted 
machines) was adopted in [19] and [20]. Slingshot [20] also 
identifies wireless hotspots as a platform to accommodate the 
virtual machine capsule. As Cloud Computing and Virtual 
Machine technologies become mainstream, more researches 
turned to the Cloud in search of a more secure, accessible and 
powerful offload platform. OS supported VM migration was 
introduced in CloneCloud [21]. Calling-the-cloud [22] add a 
middleware platform that manages an application’s execution 
between the phone and the cloud. A consumption graph is 
used to model the application. Wishbone [23] looks at the 
partitioning of sensor network applications  in particular and 
models the decision making process as a integer program. 
Aimed at reducing the communication costs [9] proposes the 

concept of Cloudlets, which brings the distant Cloud to the 
more commonly accessible WiFi hotspots. A dynamic VM 
synthesis approach is also suggested in [9]. 

Our research is distinct to all previous work since the 
applications that we investigate have computation tasks 
scattered over a group of distributed mobile devices (i.e. a 
mobile workflow), whereas existing research looks at 
applications that are implemented on one device only. Our 
algorithm provides scalable decision making to castaway 
devices; incorporates authorisation processes; uses clustering 
techniques to fully exploit the benefit of the cloudlet 
infrastructure and supports an update-on-event mechanism. 

Both energy consumption and execution schedule length 
are important benchmark metrics for a workflow. Rather than 
consider only one of these two aspects (in time efficiency [9] 
[16] [20] [24] and in energy saving [8] [7]) we consider both 
metrics and the trade-off patterns between the two. A similar 
analysis on the offload-abilities of tasks is included in [25], 
but not in any great detail, and also is only based on single 
smartphone nodes. In our simulation, we carry out a 
comprehensive analysis of the relation between different 
characteristics of a workflow and its offload-ability. 

III. THE OFFLOAD ALGORITHM 
In this section, we set the scene by abstracting the mobile 

workflow and its execution platform into two graphs, and with 
a simple example demonstrate the impact of an offload action 
to various interest groups of a workflow. Trade-offs in time 
and energy of an offload action vary depending on the 
characteristics of the workflow and the hardware network that 
carries it. We thus build these variables into our model and 
construct our objective functions. We then present the 
algorithms and discuss the design philosophies behind these. 
Variations of the algorithms are presented and we conclude 
this section with a discussion on the algorithm’s complexity 
and possible optimisation methods. 

A. Preliminaries and problem definition 
Two graphs are used in our definition, each annotate the 

workflow and the hardware network respectively. Firstly, we 
annotate our mobile workflow as a directed acyclic graph 
� = (�, �)  whose vertices are the set of tasks of the 
workflow and whose edges are the communications between 
these tasks. Each task requires a number of instructions to be 
processed in order to complete its computation, which is 
given by function I. For example �(�	) gives the number of 
instructions �	 requires. Since to run the offloaded task on the 
cloudlet, the executable of the task needs to be transmitted to 
the cloudlet, we have function 
(�	)  to represent the size 
of �	’s executable. The size of the data carried within each 
communication call is given by function D. Hence we have 
�(�	, ��)  to represent the size of the message sent from �	 
to ��. 

 Our second graph  
 = (�, �)  represents the hardware 
platform on which our workflow is to be executed. Graph H’s 
vertices are the processing nodes, and its edges represents the 
data links between these nodes. A processing node � ∈ � 
must be either a local smartphone (�� ∈ �� ) or a cloudlet 
server (�� ∈ ��) but not both, and hence we have � = �� ∪
�� ��� �� ∩ �� = ∅. Effectively, this divides the hardware 
graph H into two processing spaces: the smartphone space 
� 
and the cloudlet space  
� . Edges within the  
�  space 
interconnect the smartphones together, which in practice is 
most likely to be carried over the GPRS Core Network unless 
both phones have established WiFi links. Cloudlet nodes 
within the  
�  space are interconnected via Wide Area 
Networks (WAN). A data link between the two spaces (i.e. a 
data link from a smartphone to a cloudlet) is dependent on the 
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Figure 2: Offload expands the mapping into the Cloudlet space.  

 

smartphone’s location and can be either a 3G or WiFi 
connection in practice. The bandwidth of each data link 
varies depending on its carrier, and in our model we annotate 
function B to obtain the bandwidth property of an edge. For 
instance we have �(��, ��)  which gives the bandwidth 
between node ��and ��. We also annotate function S to give 
the processing speed of each node, for instance, �(��) 
represents the processing speed of node ��. 

The mobile workflow graph W is mapped onto the 
hardware graph H by two mapping functions: � ∶  � ⟼
�  ���  ! ∶  � ↦ �  to represent the execution plan of the 
workflow: 

�(�	) = �� ⟺ ��$% �	 &$ '*'+-�'� .� �.�' �� 

'�/' ' 0.&�$ �	 �.  ��  ⟺  !(') 0.&�$  �(�	) �. �1��2 

Before any offload action takes place, our workflow is 
executed on the smartphone space only, hence: 

(∀�)(� ∈ � → �(�) ∈ ��) 

Figure 2 shows  an example of a workflow consisting of 3 
tasks, and the workflow is originally mapped to the 
smartphone nodes only: 

�: � ↦ �, �(�5) = ��5, �(�6) = ��6, �(��) = ��� 

!: � ↦ �, !('5) = 7(��5, ��6), !('6) = 7(��6, ���) 

In order to reduce the energy cost of the smartphone 
space and also to take advantage of the fast processing speed 
provided by the cloudlet space, our general agenda is to shift 
the workflow’s tasks over to the cloudlet space as much as 
possible. In our example in Figure 2, task  �6  is offloaded 
from its local smartphone node ��6 to cloudlet node ��5, and 
this changes the mapping functions from W to H as: 

�′: � ↦ �, �′(�5) = ��5, �′(�6) = ��5, �′(��) = ��� 

!′: � ↦ �, !′('5) = 7(��5, ��5), !′('6) = 7(��5, ���) 

This change effectively expands graph W’s destination 
graph from H’s sub-graph 
� to the rest of H and with this 
expansion comes a series of trade-offs to various interest 
groups of the workflow: 

a) To the user of smartphone node ��6, because task �6’s 
computation is no longer executed locally, this reduces the 
energy cost of his handset. Moreover, because the workflow 
is redirected away from his handset, he also avoids sending 
and receiving messages to the other handsets which also 
reduces the energy cost to his handset. The only extra cost 
incurred from the offload action is that the executables of 
task  �6  needs to be transmitted to the cloudlet node  ��5 , 
which costs energy in this example. 

Notice that in a real mobile application, as identified in 
several papers [26] [11] [23] [27], not all components are 
suitable for offload. In the most common cases, components 
which require I/O access must be executed locally on the 
handset, the same also applies to user interface modules. 
Thus it is unlikely that a handset can offload all of its duties 
from the workflow. In such cases those components which 
are pinned on the handset require active connections to be 
kept between the handset and its neighbours and/or the 
cloudlet depending on its relation with other tasks in the 
workflow. Consequently offload becomes a less attractive 
option to the user. 

b) To the users of  ��5 and ���, this offload has a negative 
impact if the distance from it to cloudlet ��5 is greater than 
that to ��6. For instance, consider an enterprise workflow and 

a time in which both ��5 and ��6 resides in the same building 
and are connected through the building’s local area network 
(LAN). Cloudlet  ��5 however sits externally to this LAN. In 
such a situation, at least one more network hop is required to 
complete the communication between �5 and �6, which means 
that  ��5 must remain active for a longer period of time (with 
a higher energy cost) in order to confirm a safe exit from the 
workflow. On the other hand, in a case where  ��5  is 
connected to ��6 over a long distance network, it is possible 
that communication from  ��5  to  ��5  is shorter than that 
to ��6, thus the offload is beneficial to the user of ��5. 

c) Execution of a typical IT workflow is often constrained 
by time. While users of individual handset might prioritise 
energy saving on their phone, the overall time-efficiency of 
the workflow also needs to be ensured.  

From this simple example, we see that managing the 
trade-offs between time and energy in various aspects of the 
workflow is the key element to our algorithm’s decision 
making process. Hence we first capture the time and energy 
cost both before and after the offload action, and then with 
these functions we set our objectives to ensure the offload 
option has at least a positive effect. 

1) Time Constraint: 
Consider a task �	 which is local to smartphone node �9;

< , 
we want to see if offloading it to cloudlet node ��  is a 
beneficial option. We have the time cost before (>< ) and 
after (>?) the offload as: 

><(�	) = �(�	)
�1�9;

< 2 + A �1��, �	2
� B�9C, �9;

< D19C,9;2∈E
+ A �1�	, ��2

� B�9;
< , �9CD19;,9C2∈E

 

>?(�	, ��) = �(�	)
�(��) + A �(��, �	)

� B�9C, ��D19C,9;2∈E
+ A �(�	, ��)

� B��, �9CD19;,9C2∈E

+ 
(�	)
�(�9;

< , ��) 

The first term in both functions gives the amount of time 
task �	  takes to execute on the smartphone and the target 
cloudlet respectively. The second and third terms are the 
inbound and outbound communication time costs. Note that 
�9C is the node which task �� is currently assigned to. It can be 
either task  �� ’s local smartphone node or a cloudlet node 
which task ��  is already offloaded to. The last term in the 
second function is the amount of time it takes to transmit 
task ��’s executables to ��. 
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Algorithm 1 Find the optimal offload node for a task 
Input: task object �	; 
Output: if succeeds, return cloudlet node object nc, 
otherwise, return null; 
1: �� ← �-GG; 
2: /H�I ← 0; // maximum energy saving 
3: if �	. &$M&*'� then return ��; 
4: for each �� ∈ ��(��&

G ) do 
5:  if �NO1�	, ��2  ∧  �NQ1�	, ��2 then 
6:  if (R<(�	) − R?(�	, ��)) > /H�I then 
7:    �� ← ��; 
8:    /H�I ←  R<(�	) − R?(�	, ��); 
9: end for 
10: if �� ≠ �-GG then �	. �UVV ← ��; 
11: return ��;  
 
Algorithm 2 Build an offload tree on an offloaded task 
Input: offloaded task object �	; 
1: for each �	W ∈ � $. �.  �	 → �	W ∈ � do 
2:  if �	W. �UVV = �-GG ∧ ¬�	W. &$M&*'� then 
3:      if �NO1�	W, �	. �UVV2  ∧  �NQ1�	W, �	. �UVV2 then 
4:   �	W. �UVV ← �	. �UVV; 
5:   Call Algorithm 2 with �	W as input; 
6: end for 
 
Algorithm 3 Offload a workflow 
Input: workflow �; 
1: sort workloads in set W in topological order; 
2: for each �	 ∈ �  do 
3:  if �	. �UVV = �-GG then 
4:  if call to Algorithm 1 with �	 as input returns 

�.� − �-GG value then 
5:     Call Algorithm 2 with �	 as input 
6: end for 

Our objective is to ensure that the offload action does not 
delay the workflow’s progress. We denote the slack time of 
task �	 with >9;

�<��\  (the slack time is calculated according to 
the workflow’s critical path) and have our time constraint as: 

  >?(�	, ��) <  >G(�&) + >9;
�<��\  (1) 

2) Energy Constraint: 
Suppose the current draw on a smartphone node ��, per 

second in mA, is N�(��)  for computing, N	(��)  when it is 
idle, N9�(��) for sending data and N9�(��) for receiving data. 
We have the energy cost on the smartphone before (R<) and 
after (R?) offloading as: 
 

 R<(�	) = �(�&)
�1�9;

< 2 × N+1��&
G 2

+ A �1��, �	2
� B�9C, �9;

< D
× N9�1�9;

< 2
19C,9;2∈E

+ A �1�	, ��2
� B�9;

< , �9CD19;,9C2∈E
× N9�1�9;

< 2 

 R?(�	, ��) = �(�	)
�(��) × N	1�9;

< 2

+ A �1��, �	2
� B�9C, ��D

× N9�1�9;
< 2

19C,9;2∈E ∧ _`Cb_`;
d

+ A �1�	, ��2
� B��, �9CD19;,9C2∈E ∧ _`Cb_`;

d
× N9�(�9;

< )

+ 
(�	)
�(�9;

< , ��) × N9�(�9;
< ) 

 
The first term in both functions give the amount of energy 

the smartphone spends whilst the task is being executed. The 
next two terms are the amount of energy spent receiving and 
sending data to the neighbouring nodes respectively. Note 
that if the other end of the communication is on a different 
node ( �9C ≠ �9;

< ), no energy is spent at �	 ’s local node for 
sending/receive the message. 

In order to guarantee that the offload action does not 
cause the smartphone to consume more energy than its 
original setting, we set our energy constraint to: 

 R?(�	, ��) < R<(�	)  (2) 
For use in our algorithm, we also denote:  

�NO(�	, ��) = &� $��&M$&'$ �ℎ' �&g' +.�$�7�&�� �. .MMG.�� �	 �. �� 
�NQ(�	, ��) = &� $��&M$&'$ �ℎ' '�'7/j +.�$�7�&�� �. .MMG.�� �	 �. �� 

B. Algorithm and Design Philosophy 
We partition our algorithm into two stages so that is can 

be implemented on the mobile nodes and the workflow’s 
monitoring server respectively. The first stage (Algorithm 1) 
is implemented on the smartphones and helps its host to 
locate the best possible offload point for its tasks according to 
the environmental parameters it gathers in real-time. For each 
of its tasks, out of all cloudlets that satisfy both time and 
energy constraints (if any), it selects the one which gives the 
largest amount of energy savings as its offload destination. A 
user has the ability to set a task’s property to isfixed in order 
to protect the relevant content from being offloaded. At line 4 
 ��(�9;

< )  represents the set of cloudlets that are visible to 
task tk’s local mobile node at that time.  

The second stage of our algorithm sits in the server side’s 
workflow engine. Algorithm 3 traverses the list of tasks and 
communicates with each task’s host to see if any offload 
action is possible. If the host’s feedback is positive, then the 
workflow engine tries to construct an offload tree cluster with 
that task being the root using Algorithm 2.  

The following document some of the algorithm’s desired 
properties that we identified in designing the algorithm: 

1) Autonomous Decision Making Ability  
Each participating smartphone node should have the 

ability to make simple offload decisions based on the 
environment it is currently situated in without prior 
knowledge or instruction from the server. A mobile wireless 
data connection, especially when implemented over a cellular 
network, is prone to connectivity disruption. In such cases, 
the isolated node should be able to carry on executing its own 
tasks in an energy-efficient manner. Algorithm 1 is designed 
to take on such duty. 

2) Offload Authorisation  
Not all resources on a mobile device are dedicated to a 

specific workflow. Although an offload action might be 
beneficial to the overall performance of the workflow, the 
owner of the device should still be able to have the authority 
to stop a task and its relevant data to be offloaded. Examples 
of which include sensitive or private information that the user 
is not prepared to share; extra financial expenditure for using 
a faster wireless connection in range, etc. Hence the isfixed 
property as used in Algorithm 1 and Algorithm 2. 
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This is especially true in choosing the type of wireless 
connections for the smartphone nodes. In practice, although 
3G and WiFi modules can be enabled at the same time on a 
smartphone, it is normally up to the local operating system to 
decide which connection is to be used for data transfer tasks. 
A remote workflow decision engine’s role is set to give 
advice to the user rather than altering the existing settings on 
the device. 

Furthermore, as discussed earlier, some tasks are not 
suitable to be offloaded. This includes user interface 
processes, I/O components and processes that are observed 
by external processes that require the output to be produced 
on the local node only [26] [11] [23] [27]. 

3) Task Clustering 
Offloading two tasks to the same cloudlet greatly reduces 

the energy consumption in completing communication tasks. 
Especially when those tasks belong to different smartphone 
nodes, clustering essentially eliminates the need to transfer 
data over a wireless connection between the mobile nodes. In 
Algorithm 2, once a task has been approved to offload to a 
cloudlet, we then attempt to exploit the same offload route 
and offload the same task’s leaf tasks to the same cloudlet. 
Recursive calls to Algorithm 2 expand the offload cluster. 

4)  Update on Event Mechanism 
The outcome of the decision making process depends 

heavily on the mobile node’s real-time environmental 
parameters. Thus accuracy of this information directly affects 
the offload’s efficiency. However, it is expensive in both time 
and energy to constantly update the information onto the 
server [28], especially when no changes have occurred 
between updates. One solution to this problem is to use the 
wake-on-event mechanism provided by the mobile’s 
operating systems [29], especially on events like entering a 
WiFi zone or moving into the range of a Cloudlet as 
demonstrated in [30]. 

Our algorithm is designed so that Algorithm 1 is triggered 
on the handset when significant change has occurred in its 
network connectivity. Updated information including a new 
local offload plan is then feedback to the workflow engine. 

C. Variations and Optimisation 
The algorithm we presented requires both constraints for 

time and energy, expression (1) and (2), to be satisfied in 
order for an offload decision to be approved. However, in 
some cases the workflow would have preference in gaining 
saving in one metric over the other. For instance, in a business 
environment, users of the workflow are highly mobile and the 
handheld device’s up time is critical for the users to be able to 
answer voice calls at all time. A non-time-critical workflow 
within such an environment has strong preference in saving 
battery life over execution time. Thus sacrifices in task 
execution time can be made in order to help reduce the energy 
consumption on handsets. 

Derived from this philosophy to trade-off gains and loses 
between time and energy, we describe two variations of the 
algorithm: 

1) Minimum Battery Cost 
Our first variation prioritises energy saving over time 

costs. An acceptable time delay >�<<Umqr rq<�v is added into 
the time constraint statement; we have the new time 
constraint as: 

  >?(�	, ��) <  >G(�&) + >9;
�<��\ + >9;

�<<Umqr rq<�v   (3) 

This acceptable delay can be either a static value or a 
dynamic value that is dependent the device’s current status 
(e.g. the current battery level, additional energy saving 
generated and etc.). 

2) Shortest Schedule Length 
In some cases, when the ability to re-charge the battery of 

the smartphone is assured, it is often preferable to take 
advantage of this opportunity to accelerate the execution of 
the workflow. In contrast to the first variation, we commit 
extra energy consumption in exchange for faster execution 
speed in the second variation. We introduce Gyz{|} to the 
energy constraint and have the modified energy constraint: 

 R?(�	, ��) < R<(�	) + RqI9?� (4) 
In the extreme case where the mobile device is docked to a 

charging station, we can remove energy constraint EP� from 
line 5 in Algorithm 1 and line 3 in Algorithm 2 completely, so 
that the offload decisions are free from energy constraints. 

3) Optimal Condition Expression 
Improvements in hardware resources can increase the 

workflow’s offload-ability. However, there is a limit to the 
hardware’s performance. For instance, an individual user’s 
available bandwidth to a WiFi hotspot is often capped. So to 
send a message of a certain size over this connection takes at 
least Data Size / Bandwidth Cap seconds. 

In order to reduce the complexity of our algorithm in real-
time, we can use an optimal conditional expression to pre-test 
a task to see if the time and energy constraints can be satisfied 
provided that the device is in the best available hardware 
environments. For instance we can take a bandwidth cap value 
of 1Mbps into the time constraint and have: 

>?�U�9(�	, ��) = �(�	)
�(��) + A �(��, �	)

1>��$
19C,9;2∈E

+ A �(�	, ��)
1>��$

19;,9C2∈E

+ 
(�	)
1>��$ 

If the value given by this expression is greater than the 
local running time G�(tk), this clearly implies that task tk is not 
suitable to be offloaded to cloudlet n�. Increases in cloudlet 
processing speed also have limited effect on improving the 
workflow’s offload-ability as we discuss in section B of our 
simulation study. Pre-testing the workflow with this optimal 
conditional expression can significantly reduce the 
algorithm’s workload at run time.  

IV. EXPERIMENTAL STUDIES 
We now present the results of the simulations conducted 

using our algorithm. Our aim is to find out the impact of our 
offloading algorithm over workflows of various distinct 
characteristics on top of different hardware environments. The 
key parameters of this study are the savings made on the 
workflow’s total energy consumption and its schedule length. 
We vary the hardware (e.g. processor speed, 3G/WiFi 
availability) and software (e.g. computation, executable size) 
specifications and study their effects on the two metrics. For 
each environmental setup, we conduct 100 runs of the 
simulation and use the averages as the experimental result. At 
the start of each run, our model generates a random workflow 
which includes 40 independent workloads. Then various 
parameters are fed into the model to construct a simulation of 
desired characteristics before we let the offloading algorithm 
take action. The measured metrics are recorded within each 
run before and after the offload for analysis.  

In the simulation, we expect to see two pairs of metrics 
affect the offloading decision the most: communication size 
and network connectivity, and computation size and cloudlet 
processing speed. We also profile the energy consumption in 
our simulation as to what activity it is spent on, and analyse 
the energy profile of the workflow before and after offload. 
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(a) 

 
(b) 

Figure 3: As the size of executables increase, fewer 
savings can be made in the workflow’s total energy cost 
and schedule length (critical path); more WiFi 
connection makes offload appear more beneficial in 
both metrics. 

(a) 

(b) 
 

Figure 4: Comparisons of offload savings in energy and 
schedule length when WiFi connectivity is zero shows that 
energy savings can be made at workloads that are not on 
the critical path, even when network resource is poor. 
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A. Communication Size and Network Connectivity 
In this group of simulations we aim to find out the impact 

of an increase in communication size over a workflow’s 
offload-ability, and also see if improvements in the wireless 
connectivity between the smartphone space and the cloudlet 
domain can help expand the benefits of the offload activity. In 
order to eliminate the impact from the other critical attributes 
of a workflow, the computation size, we fix the mean local 
(smartphone) processing time to 1 1000⁄  of the mean 
communication time, so that the offloading decisions in this 
group of simulations are all only dependent on the workflow’s 
communication size. 

An offloaded workflow’s communication expense comes 
from two sources: the process to send the executable to the 
cloudlet and the re-routed inter-workload communication 
calls. We look at their impact separately:  

1) Executable Size 
 As shown in Figure 3 increases in a workflow’s mean 

workload executable size derives a decrease in the saving 
generated by the offload. More WiFi connection reduces the 
extra cost of transferring the executables and thus generates 
better offload result. Sending a copy of the executable to the 
cloudlet server is a procedure solely created to enable the 
offload action and only makes the offload a more expensive in 
time and energy. 

Like the app stores provided on iOS, Android and 
Windows Mobile, the concept of an enterprise application 
store has been widely accepted by the industry and is 
becoming a common practice in business environments. This 
eliminates the cost to transfer executables to the server. 
Similar framework can be found in MAUI [11], which keep a 
code repository on the server which contain a copy of all 
executables to overcome this issue. 

Although the two graphs in Figure 3 look very similar to 
each other, we notice that at the 0% WiFi connectivity mark, 
Figure 3.b shows that the savings made in schedule length are 
mostly zero, whereas Figure 3.a indicates that of the same 
tests energy savings are positive. One’s intuitive assumption 
would expect the saving in time and energy to be 
synchronised with each other, and this contradiction seems 
impossible on first inspection. Furthermore, as in Figure 4.a, 
out of the 100 runs which the WiFi connectivity was set to 
zero, the number of runs which occurred saving in energy 
consumption is more than twice the number of runs with 
shortened schedule lengths.  

In order to understand this result we decomposed this data 
and found that the extra energy savings come from the tasks 
that do not reside on the critical path as shown in Figure 4(b). 
This analysis indicates that to ensure the workflow gets 
completed no longer that its original schedule length, tasks on 
its critical path cannot be offloaded with poor network 
connectivity. However, away from the critical path where the 
extra communication time created by an offload can be 
compensated by its slack time, offload is still a feasible choice 
and helps preserve energy on the mobile nodes. 

2) Inter-Task Communication Size 
It is a shared presumption in many papers [3] [4] [11] that 

an increase in communication size makes offload less 
favourable. Our simulation, with increasing executable size 
brings us to the same conclusion. However, our next set of 
simulations with increasing inter-task communication size 
gives us an entirely different picture. 

In this group of tests, we exchange the value used for 
executable size and inter-task communication size in the 
previous simulation. The remainder of the workflow’s 
attributes stay unchanged. As shown in both plots in Figure 5, 
the lines are intertwined with each other, which indicate that 
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(a) 
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Figure 5: When scattered, increase in workflow’s local 
inter-task message data size does not affect its offload-
ability; more WiFi connection makes offload appear more 
beneficial in both metrics. 

 

 
Figure 6: When workloads are clustered onto a small 

number of smartphone nodes, workflows with a bigger 
local communication size produce less energy gain after 
offload. The contrary applies when workloads are 
scattered. 

 

 
Figure 7: Improvement in both savings falls flat as cloudlet 

processing speed increases. 
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the increase in inter-task communication size did not have a 
significant effect on how a workflow is offloaded. 

To understand this we need to look at one of the 
fundamental differences our research has over other work, 
which is that our experiment is based on a workflow whose 
tasks are scattered across many different smartphone nodes, 
rather than all concentrated on one device. In such a case, 
because the tasks are not all local to the same processor node, 
every inter-task communication of the workflow would have 
already had a sizeable cost in both time and energy in the 
original state. Therefore re-routing these tasks does not 
necessarily invoke any additional costs.  

Figure 6 shows a comparison between two tests with 
contrasting smartphone to workload ratios. It is very clear in 
the graph that the workflow that has a higher concentration of 
workload reacts negatively when its inter-task communication 
size increases, whereas the other workflow which has half the 
workload concentration rate shows an opposite trend. 

B. Computation Size and Cloudlet Speed 
 The fast processing speed provided by the cloudlet space 

helps reduce the execution time of tasks and helps to reduce 
the overall schedule length of the workflow. Energy wise, 
although the device might need to be in idle mode whilst 
waiting for the task to be executed on the cloudlet, the energy 
cost in idle is much lower than that of computation [29]. 
Hence we expect a group of cloudlets with higher processing 
speed to produce better offload gains. 

In this group of tests, we set the bandwidth of smartphone-
to-cloudlet and smartphone-to-smartphone connections to be 
the same in order to prevent the result from being influenced 
by network parameters. Figure 7 shows the variation of 
savings made in both schedule length and energy consumption 
with respect to the increase in cloudlet processing speed. We 
observe that the benefit of offload increases as the cloudlets 
gets faster. However, both lines fall flat after the smartphone-
to-cloudlet gets beyond 1:16. 

Recall our discussion on an optimal condition expression 
at the end of the algorithm section. Although we do not apply 
a cap to the cloudlet’s speed in our simulation, the effect from 
a faster cloudlet is capped to a certain level. In our functions 
which work out constraint functions (1) and (2), we can see 
that this is because the functions all follow a reciprocal 
relation to the processor speeds on the cloudlets -  S(n�). The 
same also applies to network bandwidth -  B(nk, n�) . This 
indicates that improvements in hardware environments help 
increase the offload-ability of workflows but excessive 
investment is not necessary. 

C. Energy Profile 
In our tests, as well as seeing the savings made by offload, 

we are also interested in what activities (computation or 
communication) the energy was spent on before and after the 
offload. Figure 8 includes two stacked bar graphs. The one in 
the background shows the energy distributions of the original 
workflow and the other, in the foreground, shows the 
offloaded workflow. The top section of both graphs indicate 
the share of energy that is spent on communication. The data 
is grouped so that on the very left is the data gathered from 
workflows that are offloaded only to take advantage of the fast 
processing speeds of the cloudlet (i.e. with poor network 
bandwidth). On the very right are data from workflows that 
are offloaded only to eliminate communication costs (slow 
cloudlet speed). We can clearly see that in all groups, the 
share of energy spent on communication has been increased 
after offload. This is a clear indication that an offloaded 
workflow is proportionally more reliant on network 
connectivity than its original form.  
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Figure 8: Offloaded workflows are proportionally more reliant 

on the network 

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

10:0 9:1 8:2 7:3 6:4 5:5 4:6 3:7 2:8 1:9 0:10

Sh
ar

e 
of

 E
ne

rg
y 

Co
st

 

Ratio of no. of nodes offloaded for computation gains  to that for 
communication gains 

Before Offload - Communication Before Offload - Computation
After Offload - Communication After Offload - Computation

V. CONCLUSIONS 
In this paper we present our approach to managing a 

mobile workflow over its supporting platform in an energy- 
and performance-aware manner. With a model which reflects 
the software and hardware characteristics of the scenario, we 
present a heuristic algorithm to build and update the offload 
plan dynamically based on the time and energy constraints of 
the workflow. Variations of the objective functions are also 
presented together with optimisation of the algorithm. A series 
of simulation studies concludes that: 1. when no code 
repository is available at the server side, a large executable 
size invariably generates a negative effect on a workflow’s 
offload-ability; 2. large inter-task communication size within a 
workflow only makes offload less feasible when tasks are 
concentrated on a small number of smartphones; 3. energy 
savings can be found easier on workloads that are not on the 
workflow’s critical path, so even when offload is proven not 
to be preferable by the time constraint, savings can still be 
made in the workflow’s overall energy consumption; 4. the 
significance of the savings brought about by offload follow a 
reciprocal relation to the hardware metrics; 5. offloaded 
workflows are proportionally more reliant on the network.  
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