
En
te

rp
ris

e
Cl

ou
d

En
te

rp
ris

e
Cl

ou
d

HeadquartersHeadquarters

Internet

t1t1 t2 t3
repeated
workflow

90% 75%
35%

WiFiCloudlet WiFi

Distant
Cloud

GPRS WiFiCloudlet

t4

Figure 1: Example showing cloudlet and faster network
connections improve battery life on mobile devices.

From Mobiles to Clouds: Developing Energy-aware Offloading Strategies for
Workflows

Bo Gao1, Ligang He1, Limin Liu2, Kenli Li3 and Stephen A. Jarvis1

1. Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK
2. Department of Optical and Electronic Engineering, Mechanical Engineering College, Shijiazhuang, China

3. School of Computer and Communication, Hunan University, Changsha, China
liganghe@dcs.warwick.ac.uk

Abstract - Cloud computing and mobile computing are two of the
most influential technologies that look set to change the face of
computing in the coming years. Combination of the two provides
us with an unprecedented opportunity to provide highly portable
and yet content-rich and computation-intensive services to the
end user. In this paper we investigate the possibility of using
code/task offload techniques between mobile and cloud in order
to reduce the energy cost of workflows deployed on mobile
devices. We first present a vision in which mobile devices are
coordinated over a network, which is equipped with a layer of
cloud-like infrastructures which we term cloudlets, whose
computational resources can be leveraged by the mobile devices
to host the execution of mission-critical mobile workflows in an
energy-aware manner. We then build a model that encompasses
various characteristics of the workflow’s software and the
network’s hardware devices. With this model, we construct the
objective functions that guide the offload decisions. We then
present a heuristic algorithm that produces statistical and
dynamic offload plans according to these objective functions and
their variations both statically and dynamically. We conclude the
paper with a series of simulation studies, the results of which give
insight into the offload-ability of workflows of different
characteristics. The results also illustrate how different hardware
specifications can affect offload efficiency. These studies indicate
that our offload algorithm can significantly improve the energy
efficiency and execution speed of mobile workflows.

Keywords-Workflow; code offload; energy; mobile computing;

I. INTRODUCTION
A mobile workflow, as presented in this paper, consists of

a sequence of interactive tasks that are deployed over a
network of distributed mobile devices. As suggested in [1], an
organisation is able to rely on the computing and connectivity
capabilities within the mobile devices as a substitute to a
technology back end server infrastructure. In [2], scenarios are
used to demonstrate how a mass of mobile devices, each used
as a rich sensor, can be used to solve real-life problems that
could not have been solved by traditional methods. With the
ability to collect and process data anywhere and at anytime,
applications deployed over a network of mobile devices
provide the user with much more flexibility than the
traditional desktop-based work environments.

Indeed, mobile devices are becoming the platform of
choice for both enterprise and personal computing needs. It is
predicted that by 2015, mobile application development
projects will outnumber native PC projects by a ratio of 4:1
[3]. In recent years, the mobile platform’s ability to enable
ubiquitous access to services on the move has broadened the
usability of many social and entertainment media and created
great successes.

With the rapid development of the smartphone and tablet
market comes a new generation of handheld devices equipped
with powerful processing units and high quality display units
that have not been seen before in the mobile world. With this
improved hardware capability, sophisticated, intelligent and

mission-critical processes will be adapted from desktops to the
mobile platform, and we also expect to see novel applications
utilising the unique features of the devices developed for the
mobile world. However, in order to achieve that goal, there
are several technical challenges, including solutions to
increase mobile devices’ battery life. In comparison to other
components, the pace of advancement in improving the
energy density of its battery has been slow [4]. Furthermore,
gains made at a hardware level have often been taken up by
extended software functionalities [5].

In this paper, we look at code/workload offload to reduce
the energy cost on mobile devices in the execution of mobile
workflows. This approach is based on well-known methods
adapted from the desktop environment. However, early
research has been constrained by the lack of fast and
ubiquitously accessible offload platform and thus has focused
on partitioning programs statically [6] [7] [8].

A new layer of network infrastructure called a cloudlet is
the term used to capture the offload destination in this paper.
The concept of a cloudlet was first introduced in [9] at the end
of the last decade, and was subsequently discussed in [2] [10]
and [11]. In [9], a cloudlet is described as a “data centre in a
box” and is “self-managing, requiring little than power,
Internet connectivity, and access control for setup.” In Figure
1, we present an example in which a cloudlet is deployed next
to a WiFi hotspot in a coffee shop that is accessible to the user
of the second smartphone. In this example, we have a
workflow that consists of four consecutive tasks deployed on
four different devices. We assume that all tasks require the
same amount of energy per second to run on their host devices
and that the communications between each task are of the

2012 ACM/IEEE 13th International Conference on Grid Computing

1550-5510/12 $26.00 © 2012 IEEE

DOI 10.1109/Grid.2012.20

139

same size. We also assume that no other application draws
energy from these devices whilst the workflow is being
executed. The workflow is run repeatedly, and we calculate
the first phone’s battery to go flat first because its user is
sitting in traffic and can only communicates with the other
phones over a 3G connection, and its offload activity (if any)
also has to go through a 3G connection (3G is more
expensive than WiFi [12] [13] [14]). The second phone
communicates with others over the coffee shop’s WiFi and is
able to use its cloudlet to offload some of ��’s computation,
and so its battery gets consumed the slowest. The user of the
last handset has access to a WiFi hotspot whilst travelling on
the train. However the train does not have a cloudlet deployed,
so to offload ��’s computation it has to send the executables to
a more distant cloudlet which takes longer to reach and thus
consumes more energy. Note that in Figure 1, an enterprise
cloud at the firm’s headquarters and a distant cloud service on
the Internet are also available to support offload. These nodes
may have faster processing speeds than the cloudlets. Offload
to these clouds could prove more beneficial if the network
connection is of high speed.

In the remainder of this paper, we first discuss the related
work and common approaches to implementing the mobile
offload architecture; see section II. In III we present our
offload model and discuss our algorithm with its features and
variations. We conclude the paper with a parametric
simulation study, see IV, in which we present the impact of
different software and hardware metrics over the offload-
ability and effectiveness of a mobile workflow.

II. RELATED WORK
The idea of transferring computation to a nearby

processing unit in order to improve mobile application’s
performance and reduce local energy cost has been researched
along with the maturity of mobile technologies. Many ideas
and techniques we use in this paper are inspired by this work.

Early research focuses on the partition schemes of an
application. Aimed at energy management, a compile-time
framework supporting remote task execution was first
introduced in [8]. Based on the same approach, a more
detailed cost graph was used in [7] with a parametric analysis
on its effect at runtime presented in [15]. Another compiler-
assisted approach was introduced in [16], which turns the
focus to reducing the application’s overall execution time.
Spectra [17] adds application fidelity (a run-time QoS
measurement) into the decision making process and uses it to
leverage execution time and energy usage in its utility
function. Spectra monitors the hardware environment at run-
time and choose between programmer pre-defined execution
plans. Chroma [18] builds on Spectra but constructs the utility
function externally in a more automated fashion. MAUI [11]
also reduces the programmer’s workload by automating some
of the partitioning-process models that its decision engine
produces via integer programming techniques.

Before Cloud, opportunistic use of surrogates (untrusted
machines) was adopted in [19] and [20]. Slingshot [20] also
identifies wireless hotspots as a platform to accommodate the
virtual machine capsule. As Cloud Computing and Virtual
Machine technologies become mainstream, more researches
turned to the Cloud in search of a more secure, accessible and
powerful offload platform. OS supported VM migration was
introduced in CloneCloud [21]. Calling-the-cloud [22] add a
middleware platform that manages an application’s execution
between the phone and the cloud. A consumption graph is
used to model the application. Wishbone [23] looks at the
partitioning of sensor network applications in particular and
models the decision making process as a integer program.
Aimed at reducing the communication costs [9] proposes the

concept of Cloudlets, which brings the distant Cloud to the
more commonly accessible WiFi hotspots. A dynamic VM
synthesis approach is also suggested in [9].

Our research is distinct to all previous work since the
applications that we investigate have computation tasks
scattered over a group of distributed mobile devices (i.e. a
mobile workflow), whereas existing research looks at
applications that are implemented on one device only. Our
algorithm provides scalable decision making to castaway
devices; incorporates authorisation processes; uses clustering
techniques to fully exploit the benefit of the cloudlet
infrastructure and supports an update-on-event mechanism.

Both energy consumption and execution schedule length
are important benchmark metrics for a workflow. Rather than
consider only one of these two aspects (in time efficiency [9]
[16] [20] [24] and in energy saving [8] [7]) we consider both
metrics and the trade-off patterns between the two. A similar
analysis on the offload-abilities of tasks is included in [25],
but not in any great detail, and also is only based on single
smartphone nodes. In our simulation, we carry out a
comprehensive analysis of the relation between different
characteristics of a workflow and its offload-ability.

III. THE OFFLOAD ALGORITHM
In this section, we set the scene by abstracting the mobile

workflow and its execution platform into two graphs, and with
a simple example demonstrate the impact of an offload action
to various interest groups of a workflow. Trade-offs in time
and energy of an offload action vary depending on the
characteristics of the workflow and the hardware network that
carries it. We thus build these variables into our model and
construct our objective functions. We then present the
algorithms and discuss the design philosophies behind these.
Variations of the algorithms are presented and we conclude
this section with a discussion on the algorithm’s complexity
and possible optimisation methods.

A. Preliminaries and problem definition
Two graphs are used in our definition, each annotate the

workflow and the hardware network respectively. Firstly, we
annotate our mobile workflow as a directed acyclic graph
� = (�, �) whose vertices are the set of tasks of the
workflow and whose edges are the communications between
these tasks. Each task requires a number of instructions to be
processed in order to complete its computation, which is
given by function I. For example �(�) gives the number of
instructions �	 requires. Since to run the offloaded task on the
cloudlet, the executable of the task needs to be transmitted to
the cloudlet, we have function
(�) to represent the size
of �	’s executable. The size of the data carried within each
communication call is given by function D. Hence we have
�(�	, ��) to represent the size of the message sent from �	
to ��.

 Our second graph
 = (�, �) represents the hardware
platform on which our workflow is to be executed. Graph H’s
vertices are the processing nodes, and its edges represents the
data links between these nodes. A processing node � ∈ �
must be either a local smartphone (�� ∈ ��) or a cloudlet
server (�� ∈ ��) but not both, and hence we have � = �� ∪
�� ��� �� ∩ �� = ∅. Effectively, this divides the hardware
graph H into two processing spaces: the smartphone space
�
and the cloudlet space
� . Edges within the
� space
interconnect the smartphones together, which in practice is
most likely to be carried over the GPRS Core Network unless
both phones have established WiFi links. Cloudlet nodes
within the
� space are interconnected via Wide Area
Networks (WAN). A data link between the two spaces (i.e. a
data link from a smartphone to a cloudlet) is dependent on the

140

t2t1 t3e1 e2

nc1

ns2ns2 ns3ns3

W
or

kf
lo

w
W

 =
 (T

, E
)

Ha
rd

w
ar

e
Pl

at
fo

rm
H

=
(N

, R
) Cl

ou
dl

et

Sp
ac

e
 H

c

Sm
ar

tp
ho

ne

Sp
ac

e
 H

s

original mapping offload mapping

ns1ns1

Figure 2: Offload expands the mapping into the Cloudlet space.

smartphone’s location and can be either a 3G or WiFi
connection in practice. The bandwidth of each data link
varies depending on its carrier, and in our model we annotate
function B to obtain the bandwidth property of an edge. For
instance we have �(��, ��) which gives the bandwidth
between node ��and ��. We also annotate function S to give
the processing speed of each node, for instance, �(��)
represents the processing speed of node ��.

The mobile workflow graph W is mapped onto the
hardware graph H by two mapping functions: � ∶ � ⟼
� ��� ! ∶ � ↦ � to represent the execution plan of the
workflow:

�(�) = �� ⟺ ��$% �	 &$ '*'+-�'� .� �.�' ��

'�/' ' 0.&�$ �	 �. �� ⟺ !(') 0.&�$ �(�) �. �1��2

Before any offload action takes place, our workflow is
executed on the smartphone space only, hence:

(∀�)(� ∈ � → �(�) ∈ ��)

Figure 2 shows an example of a workflow consisting of 3
tasks, and the workflow is originally mapped to the
smartphone nodes only:

�: � ↦ �, �(�5) = ��5, �(�6) = ��6, �(��) = ���

!: � ↦ �, !('5) = 7(��5, ��6), !('6) = 7(��6, ���)

In order to reduce the energy cost of the smartphone
space and also to take advantage of the fast processing speed
provided by the cloudlet space, our general agenda is to shift
the workflow’s tasks over to the cloudlet space as much as
possible. In our example in Figure 2, task �6 is offloaded
from its local smartphone node ��6 to cloudlet node ��5, and
this changes the mapping functions from W to H as:

�′: � ↦ �, �′(�5) = ��5, �′(�6) = ��5, �′(��) = ���

!′: � ↦ �, !′('5) = 7(��5, ��5), !′('6) = 7(��5, ���)

This change effectively expands graph W’s destination
graph from H’s sub-graph
� to the rest of H and with this
expansion comes a series of trade-offs to various interest
groups of the workflow:

a) To the user of smartphone node ��6, because task �6’s
computation is no longer executed locally, this reduces the
energy cost of his handset. Moreover, because the workflow
is redirected away from his handset, he also avoids sending
and receiving messages to the other handsets which also
reduces the energy cost to his handset. The only extra cost
incurred from the offload action is that the executables of
task �6 needs to be transmitted to the cloudlet node ��5 ,
which costs energy in this example.

Notice that in a real mobile application, as identified in
several papers [26] [11] [23] [27], not all components are
suitable for offload. In the most common cases, components
which require I/O access must be executed locally on the
handset, the same also applies to user interface modules.
Thus it is unlikely that a handset can offload all of its duties
from the workflow. In such cases those components which
are pinned on the handset require active connections to be
kept between the handset and its neighbours and/or the
cloudlet depending on its relation with other tasks in the
workflow. Consequently offload becomes a less attractive
option to the user.

b) To the users of ��5 and ���, this offload has a negative
impact if the distance from it to cloudlet ��5 is greater than
that to ��6. For instance, consider an enterprise workflow and

a time in which both ��5 and ��6 resides in the same building
and are connected through the building’s local area network
(LAN). Cloudlet ��5 however sits externally to this LAN. In
such a situation, at least one more network hop is required to
complete the communication between �5 and �6, which means
that ��5 must remain active for a longer period of time (with
a higher energy cost) in order to confirm a safe exit from the
workflow. On the other hand, in a case where ��5 is
connected to ��6 over a long distance network, it is possible
that communication from ��5 to ��5 is shorter than that
to ��6, thus the offload is beneficial to the user of ��5.

c) Execution of a typical IT workflow is often constrained
by time. While users of individual handset might prioritise
energy saving on their phone, the overall time-efficiency of
the workflow also needs to be ensured.

From this simple example, we see that managing the
trade-offs between time and energy in various aspects of the
workflow is the key element to our algorithm’s decision
making process. Hence we first capture the time and energy
cost both before and after the offload action, and then with
these functions we set our objectives to ensure the offload
option has at least a positive effect.

1) Time Constraint:
Consider a task �	 which is local to smartphone node �9;

< ,
we want to see if offloading it to cloudlet node �� is a
beneficial option. We have the time cost before (><) and
after (>?) the offload as:

><(�) = �(�)
�1�9;

< 2 + A �1��, �	2
� B�9C, �9;

< D19C,9;2∈E
+ A �1�	, ��2

� B�9;
< , �9CD19;,9C2∈E

>?(�	, ��) = �(�)
�(��) + A �(��, �)

� B�9C, ��D19C,9;2∈E
+ A �(�	, ��)

� B��, �9CD19;,9C2∈E

+
(�)
�(�9;

< , ��)

The first term in both functions gives the amount of time
task �	 takes to execute on the smartphone and the target
cloudlet respectively. The second and third terms are the
inbound and outbound communication time costs. Note that
�9C is the node which task �� is currently assigned to. It can be
either task �� ’s local smartphone node or a cloudlet node
which task �� is already offloaded to. The last term in the
second function is the amount of time it takes to transmit
task ��’s executables to ��.

141

Algorithm 1 Find the optimal offload node for a task
Input: task object �	;
Output: if succeeds, return cloudlet node object nc,
otherwise, return null;
1: �� ← �-GG;
2: /H�I ← 0; // maximum energy saving
3: if �	. &$M&*'� then return ��;
4: for each �� ∈ ��(��&

G) do
5: if �NO1�	, ��2 ∧ �NQ1�	, ��2 then
6: if (R<(�) − R?(�	, ��)) > /H�I then
7: �� ← ��;
8: /H�I ← R<(�) − R?(�	, ��);
9: end for
10: if �� ≠ �-GG then �	. �UVV ← ��;
11: return ��;

Algorithm 2 Build an offload tree on an offloaded task
Input: offloaded task object �	;
1: for each �	W ∈ � $. �. �	 → �	W ∈ � do
2: if �	W. �UVV = �-GG ∧ ¬�	W. &$M&*'� then
3: if �NO1�	W, �	. �UVV2 ∧ �NQ1�	W, �	. �UVV2 then
4: �	W. �UVV ← �	. �UVV;
5: Call Algorithm 2 with �	W as input;
6: end for

Algorithm 3 Offload a workflow
Input: workflow �;
1: sort workloads in set W in topological order;
2: for each �	 ∈ � do
3: if �	. �UVV = �-GG then
4: if call to Algorithm 1 with �	 as input returns

�.� − �-GG value then
5: Call Algorithm 2 with �	 as input
6: end for

Our objective is to ensure that the offload action does not
delay the workflow’s progress. We denote the slack time of
task �	 with >9;

�<��\ (the slack time is calculated according to
the workflow’s critical path) and have our time constraint as:

 >?(�	, ��) < >G(�&) + >9;
�<��\ (1)

2) Energy Constraint:
Suppose the current draw on a smartphone node ��, per

second in mA, is N�(��) for computing, N	(��) when it is
idle, N9�(��) for sending data and N9�(��) for receiving data.
We have the energy cost on the smartphone before (R<) and
after (R?) offloading as:

 R<(�) = �(�&)
�1�9;

< 2 × N+1��&
G 2

+ A �1��, �	2
� B�9C, �9;

< D
× N9�1�9;

< 2
19C,9;2∈E

+ A �1�	, ��2
� B�9;

< , �9CD19;,9C2∈E
× N9�1�9;

< 2

 R?(�	, ��) = �(�)
�(��) × N	1�9;

< 2

+ A �1��, �	2
� B�9C, ��D

× N9�1�9;
< 2

19C,9;2∈E ∧ _`Cb_`;
d

+ A �1�	, ��2
� B��, �9CD19;,9C2∈E ∧ _`Cb_`;

d
× N9�(�9;

<)

+
(�)
�(�9;

< , ��) × N9�(�9;
<)

The first term in both functions give the amount of energy

the smartphone spends whilst the task is being executed. The
next two terms are the amount of energy spent receiving and
sending data to the neighbouring nodes respectively. Note
that if the other end of the communication is on a different
node (�9C ≠ �9;

<), no energy is spent at �	 ’s local node for
sending/receive the message.

In order to guarantee that the offload action does not
cause the smartphone to consume more energy than its
original setting, we set our energy constraint to:

 R?(�	, ��) < R<(�) (2)
For use in our algorithm, we also denote:

�NO(�	, ��) = &� $��&M$&'$ �ℎ' �&g' +.�$�7�&�� �. .MMG.�� �	 �. ��
�NQ(�	, ��) = &� $��&M$&'$ �ℎ' '�'7/j +.�$�7�&�� �. .MMG.�� �	 �. ��

B. Algorithm and Design Philosophy
We partition our algorithm into two stages so that is can

be implemented on the mobile nodes and the workflow’s
monitoring server respectively. The first stage (Algorithm 1)
is implemented on the smartphones and helps its host to
locate the best possible offload point for its tasks according to
the environmental parameters it gathers in real-time. For each
of its tasks, out of all cloudlets that satisfy both time and
energy constraints (if any), it selects the one which gives the
largest amount of energy savings as its offload destination. A
user has the ability to set a task’s property to isfixed in order
to protect the relevant content from being offloaded. At line 4
 ��(�9;

<) represents the set of cloudlets that are visible to
task tk’s local mobile node at that time.

The second stage of our algorithm sits in the server side’s
workflow engine. Algorithm 3 traverses the list of tasks and
communicates with each task’s host to see if any offload
action is possible. If the host’s feedback is positive, then the
workflow engine tries to construct an offload tree cluster with
that task being the root using Algorithm 2.

The following document some of the algorithm’s desired
properties that we identified in designing the algorithm:

1) Autonomous Decision Making Ability
Each participating smartphone node should have the

ability to make simple offload decisions based on the
environment it is currently situated in without prior
knowledge or instruction from the server. A mobile wireless
data connection, especially when implemented over a cellular
network, is prone to connectivity disruption. In such cases,
the isolated node should be able to carry on executing its own
tasks in an energy-efficient manner. Algorithm 1 is designed
to take on such duty.

2) Offload Authorisation
Not all resources on a mobile device are dedicated to a

specific workflow. Although an offload action might be
beneficial to the overall performance of the workflow, the
owner of the device should still be able to have the authority
to stop a task and its relevant data to be offloaded. Examples
of which include sensitive or private information that the user
is not prepared to share; extra financial expenditure for using
a faster wireless connection in range, etc. Hence the isfixed
property as used in Algorithm 1 and Algorithm 2.

142

This is especially true in choosing the type of wireless
connections for the smartphone nodes. In practice, although
3G and WiFi modules can be enabled at the same time on a
smartphone, it is normally up to the local operating system to
decide which connection is to be used for data transfer tasks.
A remote workflow decision engine’s role is set to give
advice to the user rather than altering the existing settings on
the device.

Furthermore, as discussed earlier, some tasks are not
suitable to be offloaded. This includes user interface
processes, I/O components and processes that are observed
by external processes that require the output to be produced
on the local node only [26] [11] [23] [27].

3) Task Clustering
Offloading two tasks to the same cloudlet greatly reduces

the energy consumption in completing communication tasks.
Especially when those tasks belong to different smartphone
nodes, clustering essentially eliminates the need to transfer
data over a wireless connection between the mobile nodes. In
Algorithm 2, once a task has been approved to offload to a
cloudlet, we then attempt to exploit the same offload route
and offload the same task’s leaf tasks to the same cloudlet.
Recursive calls to Algorithm 2 expand the offload cluster.

4) Update on Event Mechanism
The outcome of the decision making process depends

heavily on the mobile node’s real-time environmental
parameters. Thus accuracy of this information directly affects
the offload’s efficiency. However, it is expensive in both time
and energy to constantly update the information onto the
server [28], especially when no changes have occurred
between updates. One solution to this problem is to use the
wake-on-event mechanism provided by the mobile’s
operating systems [29], especially on events like entering a
WiFi zone or moving into the range of a Cloudlet as
demonstrated in [30].

Our algorithm is designed so that Algorithm 1 is triggered
on the handset when significant change has occurred in its
network connectivity. Updated information including a new
local offload plan is then feedback to the workflow engine.

C. Variations and Optimisation
The algorithm we presented requires both constraints for

time and energy, expression (1) and (2), to be satisfied in
order for an offload decision to be approved. However, in
some cases the workflow would have preference in gaining
saving in one metric over the other. For instance, in a business
environment, users of the workflow are highly mobile and the
handheld device’s up time is critical for the users to be able to
answer voice calls at all time. A non-time-critical workflow
within such an environment has strong preference in saving
battery life over execution time. Thus sacrifices in task
execution time can be made in order to help reduce the energy
consumption on handsets.

Derived from this philosophy to trade-off gains and loses
between time and energy, we describe two variations of the
algorithm:

1) Minimum Battery Cost
Our first variation prioritises energy saving over time

costs. An acceptable time delay >�<<Umqr rq<�v is added into
the time constraint statement; we have the new time
constraint as:

 >?(�	, ��) < >G(�&) + >9;
�<��\ + >9;

�<<Umqr rq<�v (3)

This acceptable delay can be either a static value or a
dynamic value that is dependent the device’s current status
(e.g. the current battery level, additional energy saving
generated and etc.).

2) Shortest Schedule Length
In some cases, when the ability to re-charge the battery of

the smartphone is assured, it is often preferable to take
advantage of this opportunity to accelerate the execution of
the workflow. In contrast to the first variation, we commit
extra energy consumption in exchange for faster execution
speed in the second variation. We introduce Gyz{|} to the
energy constraint and have the modified energy constraint:

 R?(�	, ��) < R<(�) + RqI9?� (4)
In the extreme case where the mobile device is docked to a

charging station, we can remove energy constraint EP� from
line 5 in Algorithm 1 and line 3 in Algorithm 2 completely, so
that the offload decisions are free from energy constraints.

3) Optimal Condition Expression
Improvements in hardware resources can increase the

workflow’s offload-ability. However, there is a limit to the
hardware’s performance. For instance, an individual user’s
available bandwidth to a WiFi hotspot is often capped. So to
send a message of a certain size over this connection takes at
least Data Size / Bandwidth Cap seconds.

In order to reduce the complexity of our algorithm in real-
time, we can use an optimal conditional expression to pre-test
a task to see if the time and energy constraints can be satisfied
provided that the device is in the best available hardware
environments. For instance we can take a bandwidth cap value
of 1Mbps into the time constraint and have:

>?�U�9(�	, ��) = �(�)
�(��) + A �(��, �)

1>��$
19C,9;2∈E

+ A �(�	, ��)
1>��$

19;,9C2∈E

+
(�)
1>��$

If the value given by this expression is greater than the
local running time G�(tk), this clearly implies that task tk is not
suitable to be offloaded to cloudlet n�. Increases in cloudlet
processing speed also have limited effect on improving the
workflow’s offload-ability as we discuss in section B of our
simulation study. Pre-testing the workflow with this optimal
conditional expression can significantly reduce the
algorithm’s workload at run time.

IV. EXPERIMENTAL STUDIES
We now present the results of the simulations conducted

using our algorithm. Our aim is to find out the impact of our
offloading algorithm over workflows of various distinct
characteristics on top of different hardware environments. The
key parameters of this study are the savings made on the
workflow’s total energy consumption and its schedule length.
We vary the hardware (e.g. processor speed, 3G/WiFi
availability) and software (e.g. computation, executable size)
specifications and study their effects on the two metrics. For
each environmental setup, we conduct 100 runs of the
simulation and use the averages as the experimental result. At
the start of each run, our model generates a random workflow
which includes 40 independent workloads. Then various
parameters are fed into the model to construct a simulation of
desired characteristics before we let the offloading algorithm
take action. The measured metrics are recorded within each
run before and after the offload for analysis.

In the simulation, we expect to see two pairs of metrics
affect the offloading decision the most: communication size
and network connectivity, and computation size and cloudlet
processing speed. We also profile the energy consumption in
our simulation as to what activity it is spent on, and analyse
the energy profile of the workflow before and after offload.

143

(a)

(b)

Figure 3: As the size of executables increase, fewer
savings can be made in the workflow’s total energy cost
and schedule length (critical path); more WiFi
connection makes offload appear more beneficial in
both metrics.

(a)

(b)

Figure 4: Comparisons of offload savings in energy and
schedule length when WiFi connectivity is zero shows that
energy savings can be made at workloads that are not on
the critical path, even when network resource is poor.

0

20

40

60

80

100

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

En
er

gy
 S

av
ed

 (%
)

Percentage of smartphones with WiFi connectivity

Executable Size - 100KB

Executable Size - 200KB

Executable Size - 400KB

Executable Size - 800KB

Executable Size - 1600KB

0

20

40

60

80

100

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Sc
he

du
le

 L
en

gt
h

 S
av

ed
 (%

)

Percentage of smartphones with WiFi connectivity

Executable Size - 100KB

Executable Size - 200KB

Executable Size - 400KB

Executable Size - 800KB

Executable Size - 1600KB

0

20

40

60

80

100

100KB 200KB 300KB 400KB 800KB 1600KB

N
um

be
r o

f t
es

t r
un

s w
ith

 sa
vi

ng
s

Executable size

In Schedule Length In Energy Requireme

0

4

8

12

16

20

100KB 200KB 300KB 400KB 800KB 1600KB

Sa
vi

ng
s %

Executable size

Energy saved off critical path (%)

Energy saved on critical path (%)

Schedule length saved off critical path (%)

Schedule length saved on critical path (%)

A. Communication Size and Network Connectivity
In this group of simulations we aim to find out the impact

of an increase in communication size over a workflow’s
offload-ability, and also see if improvements in the wireless
connectivity between the smartphone space and the cloudlet
domain can help expand the benefits of the offload activity. In
order to eliminate the impact from the other critical attributes
of a workflow, the computation size, we fix the mean local
(smartphone) processing time to 1 1000⁄ of the mean
communication time, so that the offloading decisions in this
group of simulations are all only dependent on the workflow’s
communication size.

An offloaded workflow’s communication expense comes
from two sources: the process to send the executable to the
cloudlet and the re-routed inter-workload communication
calls. We look at their impact separately:

1) Executable Size
 As shown in Figure 3 increases in a workflow’s mean

workload executable size derives a decrease in the saving
generated by the offload. More WiFi connection reduces the
extra cost of transferring the executables and thus generates
better offload result. Sending a copy of the executable to the
cloudlet server is a procedure solely created to enable the
offload action and only makes the offload a more expensive in
time and energy.

Like the app stores provided on iOS, Android and
Windows Mobile, the concept of an enterprise application
store has been widely accepted by the industry and is
becoming a common practice in business environments. This
eliminates the cost to transfer executables to the server.
Similar framework can be found in MAUI [11], which keep a
code repository on the server which contain a copy of all
executables to overcome this issue.

Although the two graphs in Figure 3 look very similar to
each other, we notice that at the 0% WiFi connectivity mark,
Figure 3.b shows that the savings made in schedule length are
mostly zero, whereas Figure 3.a indicates that of the same
tests energy savings are positive. One’s intuitive assumption
would expect the saving in time and energy to be
synchronised with each other, and this contradiction seems
impossible on first inspection. Furthermore, as in Figure 4.a,
out of the 100 runs which the WiFi connectivity was set to
zero, the number of runs which occurred saving in energy
consumption is more than twice the number of runs with
shortened schedule lengths.

In order to understand this result we decomposed this data
and found that the extra energy savings come from the tasks
that do not reside on the critical path as shown in Figure 4(b).
This analysis indicates that to ensure the workflow gets
completed no longer that its original schedule length, tasks on
its critical path cannot be offloaded with poor network
connectivity. However, away from the critical path where the
extra communication time created by an offload can be
compensated by its slack time, offload is still a feasible choice
and helps preserve energy on the mobile nodes.

2) Inter-Task Communication Size
It is a shared presumption in many papers [3] [4] [11] that

an increase in communication size makes offload less
favourable. Our simulation, with increasing executable size
brings us to the same conclusion. However, our next set of
simulations with increasing inter-task communication size
gives us an entirely different picture.

In this group of tests, we exchange the value used for
executable size and inter-task communication size in the
previous simulation. The remainder of the workflow’s
attributes stay unchanged. As shown in both plots in Figure 5,
the lines are intertwined with each other, which indicate that

144

(a)

(b)

Figure 5: When scattered, increase in workflow’s local
inter-task message data size does not affect its offload-
ability; more WiFi connection makes offload appear more
beneficial in both metrics.

Figure 6: When workloads are clustered onto a small

number of smartphone nodes, workflows with a bigger
local communication size produce less energy gain after
offload. The contrary applies when workloads are
scattered.

Figure 7: Improvement in both savings falls flat as cloudlet

processing speed increases.

0

20

40

60

80

100

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

En
er

gy
 S

av
in

gs
 (%

)

Percentage of smartphones with WiFi connectivity

Data Size - 100KB

Data Size - 200KB

Data Size - 400KB

Data Size - 800KB

Data Size - 1600KB

0

20

40

60

80

100

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Ti

m
e

Sa
vi

ng
s (

%
)

Percentage of smartphons with WiFi connectivity

Data Size - 100KB

Data Size - 200KB

Data Size - 400KB

Data Size - 800KB

Data Size - 1600KB

0

20

40

60

80

100

10 20 30 40 50 60 70 80 90 100

Sa
vi

ng
s

af
te

r o
ffl

oa
d

(%
)

Increase in Communication Data Size (KB)

Schedule Length Savings (smartphone to workload ratio 1:20, full-wifi

Energy Savings (smartphone to workload ratio 1:20, full-wifi)

Schedule Length Savings (smartphone to workload ratio 1:40, full-wifi

Energy Savings (smartphone to workload ratio 1:40, full-wifi)

0

20

40

60

80

100

1:1 1:2 1:4 1:8 1:16 1:32 1:64 1:128 1:256 1:512 1:1024

Sa
vi

ng
s

(%
)

Smartphone to Cloudlet Processing Speed Ratio

In schedule length

In energy consumption

the increase in inter-task communication size did not have a
significant effect on how a workflow is offloaded.

To understand this we need to look at one of the
fundamental differences our research has over other work,
which is that our experiment is based on a workflow whose
tasks are scattered across many different smartphone nodes,
rather than all concentrated on one device. In such a case,
because the tasks are not all local to the same processor node,
every inter-task communication of the workflow would have
already had a sizeable cost in both time and energy in the
original state. Therefore re-routing these tasks does not
necessarily invoke any additional costs.

Figure 6 shows a comparison between two tests with
contrasting smartphone to workload ratios. It is very clear in
the graph that the workflow that has a higher concentration of
workload reacts negatively when its inter-task communication
size increases, whereas the other workflow which has half the
workload concentration rate shows an opposite trend.

B. Computation Size and Cloudlet Speed
 The fast processing speed provided by the cloudlet space

helps reduce the execution time of tasks and helps to reduce
the overall schedule length of the workflow. Energy wise,
although the device might need to be in idle mode whilst
waiting for the task to be executed on the cloudlet, the energy
cost in idle is much lower than that of computation [29].
Hence we expect a group of cloudlets with higher processing
speed to produce better offload gains.

In this group of tests, we set the bandwidth of smartphone-
to-cloudlet and smartphone-to-smartphone connections to be
the same in order to prevent the result from being influenced
by network parameters. Figure 7 shows the variation of
savings made in both schedule length and energy consumption
with respect to the increase in cloudlet processing speed. We
observe that the benefit of offload increases as the cloudlets
gets faster. However, both lines fall flat after the smartphone-
to-cloudlet gets beyond 1:16.

Recall our discussion on an optimal condition expression
at the end of the algorithm section. Although we do not apply
a cap to the cloudlet’s speed in our simulation, the effect from
a faster cloudlet is capped to a certain level. In our functions
which work out constraint functions (1) and (2), we can see
that this is because the functions all follow a reciprocal
relation to the processor speeds on the cloudlets - S(n�). The
same also applies to network bandwidth - B(nk, n�) . This
indicates that improvements in hardware environments help
increase the offload-ability of workflows but excessive
investment is not necessary.

C. Energy Profile
In our tests, as well as seeing the savings made by offload,

we are also interested in what activities (computation or
communication) the energy was spent on before and after the
offload. Figure 8 includes two stacked bar graphs. The one in
the background shows the energy distributions of the original
workflow and the other, in the foreground, shows the
offloaded workflow. The top section of both graphs indicate
the share of energy that is spent on communication. The data
is grouped so that on the very left is the data gathered from
workflows that are offloaded only to take advantage of the fast
processing speeds of the cloudlet (i.e. with poor network
bandwidth). On the very right are data from workflows that
are offloaded only to eliminate communication costs (slow
cloudlet speed). We can clearly see that in all groups, the
share of energy spent on communication has been increased
after offload. This is a clear indication that an offloaded
workflow is proportionally more reliant on network
connectivity than its original form.

145

Figure 8: Offloaded workflows are proportionally more reliant

on the network

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

10:0 9:1 8:2 7:3 6:4 5:5 4:6 3:7 2:8 1:9 0:10

Sh
ar

e
of

 E
ne

rg
y

Co
st

Ratio of no. of nodes offloaded for computation gains to that for
communication gains

Before Offload - Communication Before Offload - Computation
After Offload - Communication After Offload - Computation

V. CONCLUSIONS
In this paper we present our approach to managing a

mobile workflow over its supporting platform in an energy-
and performance-aware manner. With a model which reflects
the software and hardware characteristics of the scenario, we
present a heuristic algorithm to build and update the offload
plan dynamically based on the time and energy constraints of
the workflow. Variations of the objective functions are also
presented together with optimisation of the algorithm. A series
of simulation studies concludes that: 1. when no code
repository is available at the server side, a large executable
size invariably generates a negative effect on a workflow’s
offload-ability; 2. large inter-task communication size within a
workflow only makes offload less feasible when tasks are
concentrated on a small number of smartphones; 3. energy
savings can be found easier on workloads that are not on the
workflow’s critical path, so even when offload is proven not
to be preferable by the time constraint, savings can still be
made in the workflow’s overall energy consumption; 4. the
significance of the savings brought about by offload follow a
reciprocal relation to the hardware metrics; 5. offloaded
workflows are proportionally more reliant on the network.

ACKNOWLEDGMENT
This work is sponsored by the Research Project Grant of

the Leverhulme Trust (Grant No. RPG-101).

REFERENCES
[1] L. Pajunen and S. Chande, “Developing Workflow Engine for Mobile

Devices,” in 11th IEEE International Enterprise Distributed Object
Computing Conference (EDOC 2007), 2007, pp. 279-279.

[2] M. Satyanarayanan, “Mobile computing: the Next Decade,” in
Proceedings of the 1st ACM Workshop on Mobile Cloud Computing &
Services Social Networks and Beyond - MCS ’10, 2010, pp. 1-6.

[3] Gartner Research, “Gartner Reveals Top Predictions for IT
Organizations and Users for 2012 and Beyond,” Press Releases, 2011.
[Online]. Available: http://www.gartner.com/it/page.jsp?id=1862714.
[Accessed: 04-Mar-2012].

[4] J. A. Paradiso and T. Starner, “Energy Scavenging for Mobile and
Wireless Electronics,” IEEE Pervasive Computing, vol. 4, no. 1, pp.
18-27, Jan. 2005.

[5] K. Pentikousis, “In search of energy-efficient mobile networking,”
IEEE Communications Magazine, vol. 48, no. 1, pp. 95-103, Jan.
2010.

[6] M. Othman and S. Hailes, “Power conservation strategy for mobile
computers using load sharing,” ACM SIGMOBILE Mobile Computing
and Communications Review, vol. 2, no. 1, pp. 44-51, Jan. 1998.

[7] Z. Li, C. Wang, and R. Xu, “Computation offloading to save energy
on handheld devices,” in Proceedings of the international conference
on Compilers, architecture, and synthesis for embedded systems -
CASES ’01, 2001, p. 238.

[8] U. Kremer, J. Hicks, and J. M. Rehg, “Compiler-directed remote task
execution for power management,” WORKSHOP ON COMPILERS
AND OPERATING SYSTEMS FOR LOW POWER, 2000.

[9] M. Satyanarayanan, P. Bahl, R. Cáceres, and N. Davies, “The Case for
VM-Based Cloudlets in Mobile Computing,” IEEE Pervasive
Computing, vol. 8, no. 4, pp. 14-23, Oct. 2009.

[10] A. P. Miettinen and J. K. Nurminen, “Energy efficiency of mobile
clients in cloud computing,” in HotCloud’10 Proceedings of the 2nd
USENIX conference on Hot topics in cloud computing, 2010, p. 4.

[11] E. Cuervo et al., “MAUI: making smartphones last longer with code
offload,” in Proceedings of the 8th international conference on Mobile
systems, applications, and services - MobiSys ’10, 2010, p. 49--62.

[12] A. Gupta and P. Mohapatra, “Energy Consumption and Conservation
in WiFi Based Phones: A Measurement-Based Study,” in 2007 4th
Annual IEEE Communications Society Conference on Sensor, Mesh
and Ad Hoc Communications and Networks, 2007, pp. 122-131.

[13] G. P. Perrucci, F. H. P. Fitzek, G. Sasso, W. Kellerer, and J. Widmer,
“On the impact of 2G and 3G network usage for mobile phones’
battery life,” in 2009 European Wireless Conference, 2009, pp. 255-
259.

[14] K. Lee, I. Rhee, J. Lee, S. Chong, and Y. Yi, “Mobile Data
Offloading: How Much Can WiFi Deliver?,” in Proceedings of the 6th
International COnference on - Co-NEXT ’10, 2010, p. 1.

[15] C. Wang and Z. Li, “Parametric analysis for adaptive computation
offloading,” in Proceedings of the ACM SIGPLAN 2004 conference
on Programming language design and implementation - PLDI ’04,
2004, vol. 39, no. 6, p. 119.

[16] S. Kim, H. Rim, and H. Han, “Distributed execution for resource-
constrained mobile consumer devices,” IEEE Transactions on
Consumer Electronics, vol. 55, no. 2, pp. 376-384, May 2009.

[17] J. Flinn and M. Satyanarayanan, “Balancing performance, energy, and
quality in pervasive computing,” in Proceedings 22nd International
Conference on Distributed Computing Systems, 2002, pp. 217-226.

[18] R. K. Balan, M. Satyanarayanan, S. Y. Park, and T. Okoshi, “Tactics-
based remote execution for mobile computing,” in Proceedings of the
1st international conference on Mobile systems, applications and
services - MobiSys ’03, 2003, pp. 273-286.

[19] J. Flinn, S. Sinnamohideen, N. Tolia, and M. Satyanaryanan, “Data
Staging on Untrusted Surrogates,” in USENIX Conference on file and
storage technologies (2nd: 2003: San Francisco, CA), 2003, pp. 15-
28.

[20] Y.-Y. Su and J. Flinn, “Slingshot: Deploying Stateful Services in
Wireless Hotspots,” in Proceedings of the 3rd international
conference on Mobile systems, applications, and services -
MobiSys ’05, 2005, p. 79.

[21] B.-G. Chun and P. Maniatis, “Augmented smartphone applications
through clone cloud execution,” p. 8, May 2009.

[22] I. Giurgiu, O. Riva, D. Juric, I. Krivulev, and G. Alonso, “Calling the
cloud: enabling mobile phones as interfaces to cloud applications,” in
Middleware’09 Proceedings of the ACM/IFIP/USENIX 10th
international conference on Middleware, 2009, pp. 83-102.

[23] R. Newton, S. Toledo, L. Girod, H. Balakrishnan, and S. Madden,
“Wishbone: profile-based partitioning for sensornet applications,” in
Proceedings of the 6th USENIX symposium on Networked systems
design and implementation, 2009, pp. 395-408.

[24] Y. Kun, O. Shumao, and C. Hsiao-Hwa, “On effective offloading
services for resource-constrained mobile devices running heavier
mobile Internet applications,” IEEE Communications Magazine, vol.
46, no. 1, pp. 56-63, Jan. 2008.

[25] K. Kumar, “Cloud Computing for Mobile Users: Can Offloading
Computation Save Energy?,” Computer, vol. 43, no. 4, pp. 51-56,
Apr. 2010.

[26] R. Kemp, N. Palmer, T. Kielmann, and H. Bal, “Cuckoo : a
Computation Offloading Framework for Smartphones,” in
MOBICASE 2010 IEEE Computer Society, 2010.

[27] G. Chen, B.-T. Kang, M. Kandemir, N. Vijaykrishnan, M. J. Irwin,
and R. Chandramouli, “Studying energy trade offs in offloading
computation/compilation in Java-enabled mobile devices,” IEEE
Transactions on Parallel and Distributed Systems, vol. 15, no. 9, pp.
795-809, Sep. 2004.

[28] K. Lin, A. Kansal, D. Lymberopoulos, and F. Zhao, “Energy-accuracy
trade-off for continuous mobile device location,” in Proceedings of
the 8th international conference on Mobile systems, applications, and
services - MobiSys ’10, 2010, p. 285.

[29] J. Sharkey, “Coding for life – battery life, that is.,” Google IO
Developer Conference, May 2009, 2009.

[30] E. Shih, P. Bahl, and M. J. Sinclair, “Wake on wireless: An Event
Driven Energy Saving Strategy for Battery Operated Devices,” in
Proceedings of the 8th annual international conference on Mobile
computing and networking - MobiCom ’02, 2002, p. 160.

146

