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Abstract—Maintaining data availability is one of the biggest 
challenges in Decentralized Online Social Networks (DOSN). In 
the existing work of improving data availability in DOSN, it is 
often assumed that the friends of a user are always capable of 
contributing sufficient storage capacity to store all the data 
published by the user. However, this assumption is not always 
true for today’s Online Social Networks (OSNs) for the following 
reasons. On one hand, the increasingly more data are being 
generated on the OSNs nowadays. On the other hand, current 
users often use the smart mobile devices to access the OSNs. 
These two factors cause the shortage of the storage capacity in 
DOSN, where the published data are supposed to be stored 
within a friend circle. The limitation of the storage capacity may 
jeopardize the data availability. Therefore, it is desired to know 
the relation between the storage capacity contributed by the OSN 
users and the level of data availability that the OSN can achieve. 
This paper addresses this issue. In this paper, the data 
availability model over storage capacity is established. Further, a 
novel method is proposed to predict the data availability on the 
fly. Extensive simulation experiments have been conducted to 
evaluate the effectiveness of the data availability model and the 
on-the-fly prediction. The data availability model can be used by 
the OSN designers to determine the storage capacity for the 
published data in order to achieve the desired data availability. 
The on-the-fly prediction method can help the data replication 
and storage policies make judicious decisions at runtime. 

Keywords— Decentralized Online Social Network; Data 
Availability; Prediction; 

I. INTRODUCTION

In the last decade, Online Social Networks (OSNs), such as 
Facebook and Twitter, have gained extreme popularity with 
more than a billion users worldwide. OSNs allow a user to 
publish the data to all his friends in his friend circle.  

Currently, the OSN platforms are typically centralized, 
where the users store their data in the centralized servers 
deployed by the OSN service providers. The service providers 
can utilize and analyze these data to know the users’ private 
information, such as interest and personal affairs, and in the 
worst case may sell these information to the third party. 
Therefore, the current Centralized Online Social Networks 
(COSNs) have raised the serious concerns in privacy [11-14]. 

In order to address the data privacy issue, the Decentralized 
Online Social Networks (DOSNs) have been proposed recently 
[15,16]. Although the DOSN products [22] are not as popular 
as the OSNs, DOSN is indeed under active development [1, 17]. 
In order to protect the data privacy, the centralized servers are 

bypassed in DOSNs and the data published by a user are stored 
and disseminated only among the friend circle of the user [17]. 
Although DOSNs can help protect the data privacy, 
maintaining data availability becomes a big challenge. This is 
because if a friend of the user is offline, the data stored in the 
friend cannot be accessed by other friends. 

In order to achieve good data availability in DOSN, the 
data replication approach has been widely used. In this 
approach, a certain number of data replicas are created for each 
data item published by a user and these data replicas are stored 
in the user’s friend circle. By doing so, if a friend is offline, the 
data in this offline friend can be accessed through the 
replicated data stored in other friends. Consequently, data 
availability is improved. 

In the existing data replication work in DOSN, it is 
typically assumed that the friends of a user are always capable 
of contributing sufficient storage capacity to store all the 
published data [17,18]. This assumption is not ideal in the 
current times. On one hand, the increasingly more data are 
being generated on the OSNs nowadays. On the other hand, the 
users now often use mobile devices, such as mobile phones, to 
access the OSN services. The storage capacity in the mobile 
devices is much more limited than the desktop computers used 
in the “old fashioned” style of accessing OSNs. Moreover, the 
number of the friends in a friend circle is limited [4]. These 
above factors cause the storage shortage in DOSNs. Therefore, 
it is desired to know what level of data availability can be 
achieved given the total storage capacity contributed by the 
friend circle. However, the existing work in DOSN has not yet 
conducted quantitative research in this aspect. This paper aims 
to address this issue and build a quantitative model to capture 
the relation between the total storage capacity contributed by 
the friends and the level of data availability in the DOSN.  

Moreover, the friends become online or offline dynamically 
in a DOSN. The data availability will drop when the number of 
online friends decreases. A novel method is proposed in this 
paper to predict the level of data availability on the fly. 

The reason why we investigate the relation between the 
total storage capacity and data availability is because a data 
item is regarded as being available as long as it is stored in 
DOSN, no matter which friends the data replicas are stored in. 
The location of the data replicas does not directly affect the 
data availability, but mainly imposes the impact in the 
following two aspects. 
i) data accessing performance: Due to for example the 

bandwidth and latency of the friends where the data are 
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stored, other friends may who are accessing the data may 
experience different performance. 

ii) the data maintenance overhead: When a friend goes offline, 
the data replicas on the friend have to be generated on 
other online friends. Various attributes of the friend, such 
as the storage capacity contributed by this friend, 
bandwidth and lantency, have impact. 
How to optimize data accessing performance and reduce 

data maintenance overhead is the work of the underlying data 
replication and placement strategies. This work situates at the 
level of maintaining data availability. This is why in this work 
we mainly concern the total storage size provided by the 
friends collectively. Following on this work, we plan to work 
down the management levels in DOSNs and develop the 
placement strategies for data replicas among the friends.  

Using the data availability model developed in this paper, 
the DOSN designers can determine the average size of the 
storage pool that each friend should contribute for the 
published data, given the level of data availability that the 
DOSN desires to achieve. Moreover, In DOSN, the friends 
become online and offline dynamically, the data availability 
will drop when the number of online friends decreases. The on-
the-fly prediction method can be used to conduct the real-time 
prediction for the level of data availability in the near future. 
The quantitative prediction results produced by the model can 
greatly help the data replication and storage policies make 
judicious decisions on the fly. 

The rest of this paper is organized as follows. Section II
discusses related work about analyses of OSN properties, the 
existing DOSN approaches and data availability work. Section 
III states the problem which we try to address. Section IV
presents the data availability model over storage capacity.
Section V presents the on-the-fly prediction model. Section VI 
conducted extensive experiments to verify our models and 
analyzes experimental results. Finally, we make conclusions. 

II. RELATED WORK

A. Analyses of the OSN Properties 
1) Characterizations of OSN networks 

Some studies use the graphs to represent the OSN networks 
and investigate the graph structures of OSN, such as degree 
distribution, network diameter, clustering property and so on. 
They conduct the analyses through the crawled data gathered 
from popular OSN sites such as Facebook, Twitter, MySpace, 
Flickr, YouTube, LiveJournal, Cyworld and orkut [1-5]. It has 
been found that: i) OSNs manifest power-law, small-world 
properties; ii) The social network is nearly fully connected; iii) 
The neighborhoods of the users in the social graph contain the 
surprisingly dense structure, while the graph is sparse as a 
whole; iv) Most users have a moderate number of friends (less 
than 200). The findings about the number of friends will be 
used to design the simulation experiments in this paper.  

2) Analyses of user behaviours 
The work in [6-10] studied the patterns of the user 

behaviors through the crawled or clickstream data. Jin et al. [6] 
conducted a comprehensive review about the user behavior in 
OSNs from several perspectives, including social connectivity 
and interaction among users, traffic activity, and the 
characteristics in mobile environments. Benevenuto et al. [7] 
collected the clickstream data over 12 days to study the 

characteristics of OSN sessions, including the accessing 
frequency, session durations, and total time spent on OSNs. 
Schneider et al. [8] focused on feature popularity, session 
characteristics and the dynamics in the OSN sessions. Kwon et 
al. [9] empirically examined how the individual characteristics 
affect the actual user acceptance of social network services. 
Yan et al. [10] studied the human behavior in OSNs and found
that the human activity patterns are heterogeneous and bursty, 
and often follow the power-law distribution. 

Since the existing research has revealed the dynamic 
characteristics about user behaviors, such as the distributions of 
online and offline durations. These will be used as the known 
parameters when we derive the data availability model and the 
on-the-fly prediction in this paper.  

B. DOSN 
To address the data privacy problem in COSNs, several 

decentralized approaches have been proposed [15-16,19]. A 
distributed, peer-to-peer approach coupled with encryption is 
proposed in [15]. Reference [16] adopted a decentralized 
approach using the URIs as the identifiers throughout, which 
can provide the same (or even higher) level of user interaction 
as with many of the current popular OSN sties. None of these 
approaches only stores the data in his friend circle. 
Gemstone[19] stores the user’s data in the so-called Data 
Holding Agents (DHAs). If a DHA itself is offline, the data 
have to be passed to the offline DHA’s DHAs.

There are other types of DOSN [20], known as friend-to-
friend storage systems, which focus on providing the data 
storage services for all participants. Li et al. [21] argued that a 
node should choose its neighbors where the data are stored 
based on existing social relationships instead of randomly. Our 
data availability model and the on-the-fly prediction can be 
integrated into these existing DOSNs, e.g., the quantitative 
results produced by our models can be used to help make the 
data replication and/or data storage decisions. 

C. Data Availability in DOSN 
Because of the requirement of protecting data privacy, the 

data published by a user are only stored in his friend circle in 
the DOSN. Consequently, data availability is one of the biggest 
challenges in DOSNs. The existing work in improving data 
availability mainly focuses on designing smart data replication 
and data storage policies. 

The approach proposed by Koll et al. [17] exchanges the 
recommendations among the socially related nodes in order to 
effectively distribute a user’s data replicas among the eligible 
nodes carefully selected in the OSN. In the approach developed 
by Olteanu et al. [18], the preferences are given to the nodes 
when it comes to selecting the nodes for storing the data (and 
their replicas) published by a user. Buchegger et al. designed a 
two-tiered DOSN architecture (PeerSoN) [15]. All the above 
existing work about data availability focuses on how to store 
the data replicas so that they are still accessible when the users 
or certain friends of the users are offline. They all implicitly 
assume that the friends are always able to contribute the 
adequate storage capacities to store the replicated data. 

D. Data Availability in Grids and Clouds 
We also studied the existing work in achieving data 

availability in Grids and Clouds. Amjad et al. [23] surveyed the 
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dynamic replication strategies for improving data availability in 
data grids. CrossMann et al. [24] proposed a modular cloud 
storage system. However, the considerations in achieving data 
availability in Grids and Clouds are different from those in 
DOSNs. A big difference is that the data replication 
mechanisms in Grids or Clouds all explicitly or implicitly 
assume that the total storage space in Grids or Clouds is always 
sufficient to store the data replicas. This assumption is 
reasonable for Grids and Clouds because of the scale of such 
systems. However, it is not always true for DOSN due to 1) 
mobile devices are often used and 2) a friend circle is limited.  

III. PROBLEM STATEMENT

Fig. 1 illustrates the data availability problem. In Fig. 1, the 
user publishes the data at a series of time points. Assume �� is 
the first time point when he publishes the data, �����, after he 
comes online, and �� is the last time point the user publishes 
the data, ����� , before he goes offline at the time point ���	� .
Now let’s consider one of the friends in the user’s friend circle. 
Assume that the friend goes offline at time point ���	
  just 
before the user publishes ������ (and after the user publishes ��������), and then comes online at time point ��
  after the 
user goes offline. Therefore, ������ to ����� are the data that 
the friend missed when he is offline and consequently need to 
update when he comes online. Since the user is already offline, 
the friend can only update the missed data from other online 
friends where the data replicas are stored. Note that if the 
friend comes online before the user goes offline, the friend can 
update all missed data from the user directly. Therefore, data 
availability is not a problem under this circumstance. 

t1 tk

Data1 Datak' Datak

A friend goes
offline here.

data need to be updated
current time t

The user goes
offline here.

The friend comes
online here.

The user publishes
his last data here.

The user publishes
his 1st data here.

replicated data

The oldest data replicated in
online friends is published here.

Datak"

time

tk"tk'

target time t'

�

Fig. 1. The illustration of the data availability problem 

When a friend comes online, assume that the total amount 
of the data that the friend tries to update is �����	� . Out of �����	� , the amount of data that are stored in online friends of 
the user is ��	���� . The level of Data Availability (denoted by 
DA) is defined as Eq. (1). �� = ��	���������	�                                      (1)

The data replication frameworks typically work in the 
following way [17]. When the user publishes a data item, the 
certain number of data replicas are created and stored in the 
storage pools of the selected friends of the user. When a friend 
goes offline the data replicas which are stored in this friend will 
be recreated and stored on other online friends to maintain 
fixed number of data replicas for each data item. If the size of 
the storage pools is unlimited, the new data will just be added 
to the friend’s storage pool. If the storage pool is limited and 
the pool is already full, the oldest data in the storage pool will 

be replaced with the new data. Therefore, the size of the 
storage pool will determine what period of data are stored in 
the pool, which affects the data availability of the DOSN. 
Consider Fig. 1 again, for example, if the storage pool in the 
friends is limited and can only store the data published from ��
back to ��", then the data earlier than ��" are not available when 
the friend comes online at ��
 . 

One aim of this paper is to establish the data availability 
model to capture the relation between the level of data 
availability and the total size of the storage pools contributed 
by the friends. This is presented in Section IV. 

Now consider a time point � ' after the current time � .
Another aim of this paper is to predict the level of data 
availability at �' on the fly, which is presented in Section V. 
This prediction is very useful for the data replication or storage 
policies to make judicious decisions dynamically. 

IV. THE DATA AVAILABILITY MODEL OVER STORAGE 
CAPACITY

As discussed in Section III, the total size of the storage pool 
contributed by a user’s friends (denoted by SS) can determine 
the period of the published data stored in the storage pool. �	�
denotes the publishing time of the oldest data stored in the 
storage pool (i.e., ��" in Fig. 1), and ���	�  denotes the time when 
the user goes offline. Then [�	�, ���	� ]  is the period of the 
published data stored in the storage pool. This section first 
determines �	� (Section IV.A) and then presents the method of 
establishing the relation between SS and the DA of the data 
published by the user (Section IV.B). 

A. Calculating �	�
In order to determine �	�, the size of the data published by 

the user has to be calculated first. ������ denotes the number 
of times that the user publishes the data in the time duration ���.������ is a discrete random variable. ��� �������� denotes the 
probability density function (pdf) of ������ . a denotes the 
average size of the data published by the user each time. ������ denotes the total size of the data published by the user 
in ��� . Clearly, ������ = ������� . Therefore, the pdf of ������, denoted by ��� ��������, can be determined by Eq. (2) 
and the expectation of ������ can be calculated by Eq. (3). ��� �������� = � ∙ ��� ��������                     (2)#$������% = � ∙ #$������%

= � ∙ & � ∙ �����(���)� '*
+-�         (3)

The publishing time of the oldest data stored in the storage 
pool, �	�, can be calculated using Eq. (4) given SS, where k is 
the replication degree in the OSN, i.e., the number of replicas 
created for each data item.  #[�(���	� − �	�)] ∙ . = ��                              (4)
B. Establishing the relation between DA and SS 

When a friend comes online at ��
  (as in Fig. 1) and his last 
logout time (denoted by ���	
 ) is no earlier than �	�, the friend 
can update all the data missed during his offline duration from 
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other online friends. Namely, DA for a friend coming online at ��
 , denoted by �����
 , ���	
 �, is 100% in this case. When ���	

is earlier than �	� , the data published in $���	
 , �	�%  are not 
available to the friend. Therefore, DA in this case equals the 
proportion of the data that are published in [�	�, ���	� ] to those in $���	
 , ���	� %. In summary, �����
 , ���	
 � can be calculated using 
Eq. (5). 

�����
 , ���	
 � = / 100% ���	
 ≥ �	�#[�(���	� − �	�)]#[�����	� − ���	
 �] ∙ 100% ���	
 < �	�   (5)
��

  denotes the time duration of a friend being offline 

continuously. 8�

���

�  denotes the pdf of ��

 . The 
probability that a friend went offline at ���	
  and then comes 
online at ��
  is 8�

���
 − ���	
 � 9���	
  and the corresponding �����
 , ���	
 � is obtained by Eq. (5). Then, DA at time point ��

can be expressed by Eq. (6). : 8�

���
 − ���	
 �  ∙ ��(��
 , ���	
 )9���	
;

	>?@?                (6)��$	>?@? ,B%  denotes the expectation of DA over the time 
duration between ���	�  and ��
 , where h is the duration between 
the user’s two consecutive logins (The work in [8] has 
presented the method to obtain the value of h). ��$	>?@? ,B% can 
be calculated by Eq. (7), where 8�	���
 �  is the probability 
density function that a friend comes online at time ��
 .��$	>?@? ,B% = : 8�	(��
 ) ∙B

	>?@?   
: 8�

���
 − ���	
 ���(��
 , ���	
 )9���	
;

	>?@? 9��
   (7)��$;,	>?@? %  denotes the expectation of DA over the time 
duration between 0 and  ���	� . Since the user is online between 
0 and ���	� , DA is 100% over the time duration between 0 and ���	� , i.e., Eq. (8) holds. ��$;,	>?@? % = 100%                                 (8)���  denotes the time duration of a friend being online 
continuously. 8��(���) denotes the pdf of ���. DA of the data 
published by the user under the given value of h, denoted by ��(ℎ), can be calculated by combining Eq. (7) and (8) as 
follows. ��(ℎ) = : 8��(���	� )B

;∙ F���	�ℎ  ∙ ��$;,	>?@? %  + ℎ − ���	�ℎ  ∙ ��$	>?@? ,B%H 9���	�  (9)ℎ = ��� + ��

  is also a random variable. 8J(ℎ)  denotes 
the probability density function of h, which can be derived 
from the probability density functions of ��� and ��

 and has 
also been studied in the literature [9].  

Therefore, DA of the data published by the user can be 
finally calculated using Eq. (10). �� = : ��(ℎ) ∙ 8J(ℎ)9ℎ*

;                         (10)
As can be seen from Eq. (9), DA is a function over ��$	>?@? ,J% , which is in turn a function over �����
 , ���	
 �

(shown in Eq. (7)). �����
 , ���	
 � is the function over �	� (Eq. 
(5)). As shown in Eq. (4), �	� can be calculated from SS. Thus,
we have now established the function of DA over SS. 

V. PREDICTING THE DATA AVAILABILITY ON THE FLY

Using the method in Section IV, we can calculate SS
required to achieve the desired DA of the data published by the 
user. Note that SS is the total storage capacity of all online 
friends of the user. The friends log in and out dynamically and 
therefore the number of online friends varies over time. When 
the number of online friends decreases, the size of the 
individual storage pool contributed by each online friend has to
be increased in order to maintain the desired DA. The existing 
work in the literature often assumes that the friends of a user 
are always capable of contributing sufficient storage capacity 
for the replicated data published by the user. Consequently, 
there is little work yet in the literature investigating the impact 
of the friends’ dynamic behaviors (i.e., dynamic login and 
logout) on DA. However, as we have discussed in the 
introduction section, it is not always acceptable to assume that 
the friends are willing and able to contribute unlimited storage 
capacity in the nowadays OSNs. In this paper, we assume that 
the maximum storage capacity that each friend is able to 
contribute is S. When the required SS exceeds the total storage 
capacity contributed by all online friends, the DA will drop. 
Due to the friends’ dynamic behaviors, it is very useful to be 
able to predict the DA on the fly. This section addresses this 
issue. Consider Fig. 1 again. Assume the current time is �. The 
problem of the on-the-fly prediction of DA is to predict the DA
at a future time point �� (�� > �).  

According to the discussions above, the key of predicting 
DA is to predict the number of online friends. At the current 
time �, we know how many friends are online or offline. We 
can predict the number of friends who are online at a future 
time ��, if we can predict the following two parameters: i) how 
many of the friends who are online at time � do not change 
their states from online to offline before or at ��, and ii) how 
many of the friends who are offline at time � change their states 
to online before or at ��. The methods of predicting the above 
two parameters are presented in Section V.A and V.B, 
respectively. Section V.C combines the results obtained in 
Section V.A and V.B to predict the number of online friends 
and further predict the DA at time ��.
A. Predicting the number of the friends who are online at �

and do not change to offline before or at ��
Given an online friend L at time �, we can know the time 

point at which the friend logged in (i.e., became online), which 
is denoted by ��_�� . The probability that friend L  does not 
change to offline before ��  equals the probability that L  will 
only log out after �′ (i.e., L’s logout time, denoted by ���	_��  is 
greater than �′). The probability, denoted by N��	_�� ����	_�� > �′�,
in turn equals the probability that L’s online duration is greater 
than ��� − ��_�� � under the condition that L’s  online duration 
is no less than �� − ��_�� �, which can be computed using the 
conditional probability shown in Eq. (11). The condition of ���� ≥ � − ��_�� � in Eq. (11) reflect the fact that L  has been 
staying online for the duration of �� − ��_�� �.
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N��	_�� ����	_�� > ���= N�� ����� > �� − ��_�� �|���� ≥ � − ��_�� �� 
= 1 − O�� ��′ − ��_�� �1 − O���� − ��_�� �                                  (11)P��  and Q��  denotes the set and the number of all online 

friends at time �, respectively. Then the number of the friends 
in P��  who are still online at �′ can be predicted using Eq. (12). 

& N��	_�� ����	_�� > ���R>S
-�                               (12)

B. Predicting the number of the friends who are offline at �
and change the states to online before or at ��
The method of predicting the number of the friends who are 

offline at � and change the states to online before or at ��  is 
similar as that presented in Section V.A.  N�_T�

���_T�

 ≤ �′�= N�

 ����

 ≤ �′ − ���	_T�

 �|���

 ≥ � − ���	_T�

 �� 

= O�

��′ − ���	_T�

 � − O�

�� − ���	_T�

 �1 − O�

 �� − ���	_T�

 �             (13)
Given an offline friend LT at time �, we can know the time 

when LT logged off, denoted by ���	_T�

 . The probability that LT
changes the state to online before or at �� equals the probability 
that LT’s login time, ��_T�

 , is no later than ��. The probability, 
denoted by N�_T�

���_T�

 ≤ ���, in turn equals the probability that LT ’s offline duration is smaller than ��� − ���	_T�

 �  under the 
condition that LT’s offline duration is no less than �� − ���	_T�

 �,
which can be calculated using Eq. (13).P�

  and Q�

  denotes the set and the number of all offline 
friends at time �, respectively. Then the number of the friends 
in P�

  who change the states to online before or at time �� can 
be predicted using Eq. (14). 

& N�_T�

���_T�

 ≤ ���R>VV
T-�                              (14)

C. Predicting the number of online friends and the DA at ��Q��(�′) denotes the number of online friends at ��. Q��(�′)
can be calculated by Eq. 15 by combining (12) and (14). 

Q��(�′)  = & N��	_�� ����	_�� > ���R>S
-� + & N�_T�

���_T�

 ≤ ���R>VV

T-�
= & F1 − O����� − ��_�� �1 − O���� − ��_�� � HR>S

-�                                                
+ & WO�

��′ − ���	_T�

 � − O�

�� − ���	_T�

 �1 − O�

 �� − ���	_T�

 � XR>VV

T-�  (15)
S is the maximum storage capacity that each friend is able 

to contribute. Then the total storage capacity contributed by all 
online friends at time ��  is �� ∙ Q��(�′)� . Using the method 
presented in Section IV, the DA at �′ can be determined.

VI. CASE STUDY 

When we derive the DA model over storage capacity and 
the on-the-fly prediction of DA in Section IV and V, we used 
the generic form of the probability distribution for online and 
offline durations (i.e., 8��(���) and 8�

���

�) as well as for 
the data publishing pattern (i.e., ������. However, it has been 
shown that the online and offline durations may follow the 
power-law distribution or the exponential distribution [25, 26], 
and that the data publishing pattern may follow the Poisson 
process [26]. In this section, we conduct the case studies by 
substituting the generic form of the probability distribution for 
the power-law and the Poisson distribution. In fact, any 
probability distributions can be used in the constructed models. 
Even if the mathematical derivations may not be conducted 
with some distributions, Mathematica[27] can be used to 
calculate the model results numerically.

A. Poisson distribution 
If the data publishing pattern, ������, follows the Poisson 

distribution with the parameter Y�� , then we have Eq. (16).
Consequently, E$������% can be calculated using Eq. (17).

��� �������� = \�^`?	`? �Y������+�!                 (16)#$������% = Y�����                                             (17)
Further, Eq. (3) can be transformed to Eq. (18).#$�(���)% = � ∙ #$������% = �Y�����            (18)
With Eq. (18), Eq. (4) becomes Eq. (19).�.Y��(���	� − �	�) = ��                       (19)
Therefore, �	� can be calculated using Eq. (20).�	� = ���	� − ���.Y��                             (20)

B. power-law distribution 
If the offline duration, ��

 , follows power-law with 

parameter Y�

 , then we have Eq. (22), where c =�Y�

 − 1��b� ^>VV�� given the minimal duration �b� [25].8�

���

� = d ∙ ��

�^>VV                                 (22)
We now show how to use the power-law distribution to 

derive the on-the-fly prediction for the number of online 
friends, which is obtained using Eq. (11), (13) and (15). 

Eq. (11) can be further derived to obtain Eq. (23).  

N��	_�� ����	_�� > ����� = 1 − ∫ d����^>S9���	f�	gS_g>S	hgS1 − ∫ d����^>S9���	�	gS_g>S	hgS
       

=   F�� − ��_��� − ��_�� H��^>S                             (23)
Eq. (13) can be further derived to obtain Eq. (24). 

N�_T�

���_T�

 ≤ ����� = ∫ d��

�^>VV9��

	f�	>?@_i>VV
	�	>?@_i>VV

1 − ∫ d��

�^>VV9��

	�	>?@_i>VV	hgS
= 1 − j�� − ���	_T�



� − ���	_T�

 k��^>VV                       (24)

165165



Eq. (15) can be further derived to Eq. (25). 

Q��(��)��  = & F�� − ��_��� − ��_�� H��^>SR>S
-�

+ & W1 − j�′ − ���	_T�


� − ���	_T�

 k��^>VVXR>VV

T-�   (25)
VII. EVALUATION

A discrete simulator has been developed in this work to 
simulate a DOSN. There are N users in the simulated DOSN. 
Some users act as the friends of another user and update the 
data published by the user. The online and offline durations of 
the users in the simulated DOSN follow the Power-Law 
distribution (PL) or the Exponential distribution (Exp), as 
observed in the literature. The user publishes the data following 
the Poisson process and k copies of replicas are created for 
each data item and stored in the online friends. 

In order to evaluate the DA model over storage capacity, 
the DA is predicted given the size of storage capacity and other 
parameters values. Then the simulated DOSN is run using 
those parameters values. Each friend offers the same storage 
capacity, which can be adjusted so that the total storage 
capacity of all online friends always equals the storage 
capacity used to predict the DA. During the running, when a 
friend comes online at a time point, the DA of the published 
data for the friend is recorded. The average of all recorded DA
is regarded as the actual DA, which is compared against the 
predicted DA to measure the prediction accuracy.  

In order to evaluate the on-the-fly prediction, the 
experimental scenario is designed as follows. A user and his 
friends log in and out following the specified distribution 
during the time interval [0, l]. The current time is set to be m-th 
min (m < l and the user is offline at time m). The online or 
offline states of all friends at time m as well as the latest login 
or logout time before time m are collected. The collected data, 
combing with the specified distributions of the friends’ online 
and offline duration, are used to predict the number of online 
friends and DA at the future time points (i.e., the time points 
later than m). The predicted data are then compared against the 
data obtained from the actual running. For example, the 
number of the friends of a user is set to be 150. Fig. 2 shows 
the online/offline state of each friend when the current time is 
set to be 31st min. A point above the red line (i.e., when y=0) 
represents the latest login time of a friend who is online at 31st

min, while a point below the red line shows the latest logout 
time of a friend who is offline at 31st min.  

In the rest of this section, the DA model over storage 
capacity is evaluated in Section VII.A with regards to the 
following aspects: i) the impact of storage capacity on DA, ii) 
the impact of the DOSN parameters, including online /offline 
duration and the rate of user publishing data, on DA, and iii) 
the accuracy of the relation established between DA and SS. 

In Section VII.B, the on-the-fly prediction is evaluated with 
regards to the following aspects:  i) the accuracy of predicting
the number of online friends on the fly, ii) the accuracy of the 
DA predicted on the fly.  

Unless stated otherwise, the experimental parameters used 
in the evaluations take the values shown in Table II. These 
values are chosen based on those used in the literature [4].

TABLE I. DEFAULT VALUES OF THE EXPERIMENTAL PARAMETERS 

Notations Value DescriptionsQ 150 The number of the user’s friends.
a 1 The average size of published dataY���+� 1/3 The parameter of the online time duration which 

follows exponential distributionY�

�+� 1/11 The parameter of the offline time duration which 
follows exponential distributionY���� 2.5 The parameter of the online time duration which 
follows power-law distributionY�

�� 2.1 The parameter of the offline time duration which 
follows power-law distributionY���� 1 The parameter of the number of times the user 
publishes data which follows Poisson distribution

A. Evaluating the DA model over storage capacity 
1) Impact of storage capacity on DA 

Fig. 3 shows the impact of the total storage capacity (i.e., 
SS in Section IV) on the DA calculated from the DA model 
presented in Section IV. As shown in Fig. 3, the DA increases 
as SS increases. Under both Exponential distribution and 
Power-Law distribution of the friends’ online duration, data 
availability tails off after SS increases more than a certain value. 
These results suggest that it is unnecessary to ask the friends to 
contribute unlimited storage capacity, as often assumed in the 
work in the literature [16,17].  

From this figure, we can also determine SS that is required 
to achieve a certain DA. For example, DA reaches 99% under 
PL or Exp when SS is 194.38 and 151.97, respectively. 

2) Impact of on/offline durations on DA 
As can be seen from the derivation of the DA model in 

Section IV, the online/offline durations impact on DA. We 
conducted the experiments to evaluate their impact. Since the 
online and offline durations have the similar impact, only the 
results for offline durations are presented here. Given the 
distribution, the average duration is controlled by Y�

 . The 
inverse of Y�

  is the length of the duration.  

Fig. 4 shows the impact of Y�

  on DA. In the experiments 
in Fig. 4, SS is set to be 194.38 and 151.97 under PL and Exp 
(as shown in Fig. 3), respectively, so that DA is 99% under the 
default value of Y�

  (as in Table II). We then change the value 
of Y�

  and plot the corresponding DA. It can be seen that DA
increases as Y�

  increases under both Exp and PL. These 
results can be explained as follows. When Y�

  increases, the 

Fig. 2. The states of all friends at 
current time point

Fig. 3. The impact of SS on DA
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average length of the friends’ offline durations decreases. 
Given a certain SS, the period of the stored data (i.e., [�	�, �]) is 
fixed. Thus, the shorter offline durations of the friends result in 
higher probability that the time of the data that the friends try 
to update fall into [�	�, �]. Consequently, DA is higher.  

(a) exponential distribution (b) power-law distribution
Fig. 4. The impact of the offline durations on DA

3) Impact of the data publishing rate on DA 
From the DA model, we can also know that the pattern with 

which the user publishes data has the impact on DA. It is 
shown in the literature that the number of times that the user 
publishes the data in a duration follows the Poisson distribution.
Then, the parameter of the Poisson distribution, Y�� , reflects 
the data publishing rate. Higher Y�� means a higher rate.  

Fig. 5 demonstrates the impact of Y�� on DA. The setting of 
SS is the same as that in Fig. 4. The figure shows that DA
decreases as Y�� increases. This is because when the data are 
published at a higher rate, [�	�, �] is shorter given a fixed SS.
Consequently, DA is lower.  

Fig. 5. The impact of the data publishing rate on DA

4) Accuracy of the DA model 
The DA model over storage capacity in Section IV can 

calculate the DA given a SS. We conducted the experiments to 
study how accurate the calculated DA is, compared with the 
DA obtained from the actual running. The results are presented 
in Fig. 6. The results under Exp and PL show the similar 
pattern. Therefore, only the results under Exp are presented.  

In Fig. 6, the setting of SS is the same as that in Fig. 4 (i.e., 
151.97). The DA calculated by the DA model is 99%, which is 
the red line in Fig.6a. We run the simulated OSN with this SS
and plot the actual DA over time, which is the blue line in Fig. 
6a. It can be seen that the DA is fairly close to the calculated 
DA in most cases. These results suggest that the DA model is 
effective. In order to reveal the fundamental reason for this, we 
also compared �	� obtained in the DA model (the red line in Fig. 
6b) with the time of the oldest data that a friend tried to update 
when he came online at a time point (plotted in blue in Fig. 6b). 
If the time of the oldest data is not earlier than the calculated �	�,
the DA model is effective. As can be seen from Fig. 6b, the 

blue line are higher (i.e., the corresponding time is later) than 
the red line in most cases. This gives the fundamental reason 
why the DA model is effective, i.e., with the SS obtained by the 
DA model, the online friends can in most cases store the data 
that a friend tries to update when he comes online. 

(a) From the perspective of DA (b) From the perspective of �	�
Fig. 6. The Accuracy of the DA model 

B. Evaluating the on-the-fly prediction of DA 
1) Accuracy of the predicted number of online friends and 

the impact of online and offline durations 
As shown in Section V, the predicted number of online 

friends (i.e., Non) determines the value of the on-the-fly DA.
Therefore, we conducted the experiments to evaluate the 
accuracy of predicting Non. The experimental scenario has been 
presented in the third paragraph of Section VII. The 
experimental results are shown in Fig. 7. 

(a) Y�� = 1/10, Y�

 = 1/20           (b) Y�� = 1/6, Y�

 = 1/10

(c) Y�� = 1/3, Y�

 = 1/11          (d) Y�� = 1, Y�

 = 1/15
Fig. 7. The accuracy of prediction  model over time 

In Fig. 7, the current time point is set to be 31st min and the 
on-the-fly prediction predicts Non from 31st min onwards, 
which is plotted in blue. The actual Non from 31st min onwards 
is plotted in green.  Fig. 7a, b, c and d show the results under 
different Y�� and Y�

  (i.e., online and offline durations). It can 
be seen from Fig. 7a that compared with its actual values, the 
prediction of Non is fairly accurate in the first 10 minutes, 
which shows the effectiveness and applicability of the 
proposed prediction method since the prediction can be 
conducted on the fly as the time elapses. By comparing Fig. 7a, 
b, c and d, we can see that the length of the accurate prediction 
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decreases as the settings of Y�� and Y�

  change from Fig. 7a
to 7d. These results indicate that the online and offline 
durations have impact on the prediction accuracy. After 
carefully analyzing the changing trend of Y��  and Y�

 , it 
appears the minimum value between the online and the offline 
durations (i.e., min(1/Y��, 1/Y�

)) determines the length of 
accurate prediction. The less value of min(1/Y��, 1/Y�

), the 
shorter length of the accurate prediction. The reason for this is 
because when min(1/Y��, 1/Y�

) is smaller, the friends are 
more dynamic and consequently, it is more difficult to obtain 
the accurate prediction in the future.  

2) Accuracy of the predicted DA 
Finally, Fig. 8 presents the experiments results that show 

the accuracy of the on-the-fly prediction of DA. The 
experimental settings in Fig. 8 are the same as those in Fig. 7.
It can be seen from Fig. 8, the trends shown in Fig. 8 are 
consistent with those in Fig. 7. This once again shows the 
effectiveness of the on-the-fly prediction.  

(a) Y�� = 1/10, Y�

 = 1/20               (b) Y�� = 1/6, Y�

 = 1/10

(c) Y�� = 1/3, Y�

 = 1/11                (d) Y�� = 1, Y�

 = 1/15
Fig. 8. The accuracy of the on-the-fly prediction of DA

VIII. CONCLUSIONS

This paper proposes a data availability model over storage 
capacity for DOSNs. Further, a novel method is proposed to 
predict the data availability on the fly. Extensive simulation 
experiments have been conducted. The results show that the 
proposed data availability method is able to capture the relation 
between data availability and storage capacity effectively, and 
that the on-the-fly prediction method can predict the level of 
data availability accurately. 

This work is situated at the level of maintaining the data 
availability. How to optimize the data accessing performance 
and reduce the data maintenance overhead is the work of the 
underlying data replication and placement strategies. In the 
future, we plan to work down the management level in DOSN 
and develop the strategies of placing data replicas among 
friends in DOSN. When designing the placement strategies, the 
attributes of individual friends, such as the bandwidth and 
latency associated to a friend, the storage capacity contributed 
by a friend and so on, will be taken into account.
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