
Modelling and Optimizing Bandwidth Provision
for Interacting Cloud Services

Chao Chen1, Ligang He1,2(B), Bo Gao1, Cheng Chang2, Kenli Li2,
and Keqin Li2,3

1 Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK
{chao,liganghe,bogao}@dcs.warwick.ac.uk

2 School of Computer Science and Electronic Engineering, Hunan University,
Changsha 410082, China

{chengchang,lkl}@hnu.edu.cn
3 Department of Computer Science, State University of New York,

New Paltz, NY 12561, USA
lik@newpaltz.edu

Abstract. Non-deterministic communication patterns among interact-
ing Cloud services impose a challenge in determining appropriate band-
width provision to satisfy the communication demands. This paper aims
to address this challenge and develops a Communication Input-Output
(CIO) model to capture data communication produced by Cloud ser-
vices. The proposed model borrows the ideas from the Leontief’s Input-
Output Model in economy. Based on the model, this paper develops a
method to determine the bandwidth provision for individual VMs that
host a service. We further develop a Communication-oriented Simulated
Annealing (CSA) algorithm, which takes an initial VM-to-PM mapping
as input and finds the mapping with the minimal bandwidth provision
and without increasing the PM usage in the initial mapping. Experi-
ments have been conducted to evaluate the effectiveness and efficiency
of the CIO model and the CSA algorithm.

1 Introduction

Services deployed in a Cloud are often hosted in a number of virtual machines
(VMs), which are then placed on Physical Machines (PMs). In a Cloud environ-
ment, when services are invoked, the service invocations are often not isolated.
An invocation to a service may spawn further invocations to other services. More-
over, service invocation and consequently data communication among them may
not be static, but depend on the dynamic system information or service input.
Consider the following example. NASDAQ QMX, the largest stock exchange
company in the world, has been developing their data analysis services on Ama-
zon Web Services (AWS) [1]. The data analysis process may involve a collection
of interacting services, which are implemented through the standard services

This research was partially funded by the Key Program of National Natural Science
Foundation of China (Grant Numbers: 61133005, 61432005).

c© Springer-Verlag Berlin Heidelberg 2015
A. Barros et al. (Eds.): ICSOC 2015, LNCS 9435, pp. 305–315, 2015.
DOI: 10.1007/978-3-662-48616-0 19

306 C. Chen et al.

provided in AWS, such as S3, VPC, EC2, etc. Which services are involved in the
data analysis workflow and their invocation order are not static, but depend on
dynamic system information at runtime, such as the initial data submitted by
the clients, performance or security needs of the clients, and so on.

This brings the challenge to determine the bandwidth provision for these
services and more specifically for the VMs that host the services. Solving the
problem of VM bandwidth provision can help the tenants equip the VMs with
proper communication capacity. In EC2, different types of VM instances have dif-
ferent communication capacity and consequently different price rates. Moreover,
the data transfer between VMs is also charged in AWS. An exemplar applica-
tion of this work is that when an enterprise tenant purchases the VMs in EC2
to build a business Cloud platform, offering to its users a rich set of interacting
services, this work can help the enterprise decide which type of VM instance is
most appropriate for each service, so that the VMs are able to fulfil the commu-
nication requirement inherent in the business Cloud while the enterprise does
not pay unnecessary extra bills for VMs with higher bandwidth.

This paper aims to address this challenge by developing a Communication
Input-Output (CIO) model for data communication among services. It borrows
the idea from Leontief’s Input-Output model in Economy and captures the inter-
action relation and impact among services. The data communication performed
by each service can be calculated from the model. Knowing data communication
performed by a service does not necessarily mean that the solution is apparent
to the problem of bandwidth provision for the service’s VMs. This is because
if two VMs of two communicating services are consolidated into the same PM,
the data transmission between these two VMs does not consume their band-
width. Generally, even if the bandwidth provision for the services is determined,
the bandwidth provision for each individual VM still depends on the specific
VM-to-PM mapping. A lot of existing work has investigated the methods to
find the VM-to-PM mapping with the minimal number of PMs. However, pre-
vious work does not take into account the non-deterministic nature of service
interaction when they design their consolidation strategies. Our studies found
that even if the VM-to-PM mapping has the minimal number of PMs, there
is still room to further reduce the communication cost in the mapping while
maintaining the minimal number of PMs. This paper designs and implements
a Communication-oriented Simulated-Annealing (CSA) algorithm to reduce the
total bandwidth provision of all VMs in a set of interacting services. The CSA
algorithm takes as input the VM-to-PM mapping with the minimal number of
PMs that is generated by the existing strategies. The CSA gradually adjusts the
initial VM mapping to generate new mappings with reduced bandwidth provi-
sion. The adjustment of VM mappings is designed in the way that it does not
increase the number of used PMs.

2 Background and Related Work

Background of the IO Model. Leontief’s input-output (IO) model [2] divides
an economy into sectors (e.g. agriculture, manufacturing, etc.). Goods produced

Modelling and Optimizing Bandwidth Provision 307

by a sector are consumed by the consumer market and other sectors. The con-
sumer market is referred to as the open sector. Demands generated from the open
sector are referred to as external demands. Goods that are exchanged between
sectors is referred to as internal demands of the economy. Let column vectors
A and X denote the external demands and the total demands of all sectors in
the economy respectively, and C denote the internal consumption matrix of the
economy in which cij represents the amount of goods that need to be consumed
by sector i to produce one unit of goods in sector j. Leontief’s IO model can be
expressed by Eq. 1, which can determine the total demand vector X.

X = (I − C)−1A. (1)

Bandwidth Provision in Cloud. The work in [3–7] implements the techniques
to enforce the minimum bandwidth allocation for each VM that is used to host
specific services. However, these studies do not consider the policies to determine
the appropriate bandwidth capacity for each service and its constituent VMs
from a holistic perspective.

The methods proposed in the literature [3,4,8] are mostly job-oriented (or
tenants-oriented), i.e., to calculate the resource allocation given the specific tasks
submitted by the tenants. However, as we discussed in Sect. 1, service invocations
in a service workflow may vary according to the dynamic system information,
and therefore it may be difficult to know beforehand the exact execution paths
of the workflows in the Cloud. The bandwidth allocation policies developed in
this paper are service-oriented, which do not focus on allocating the resources
for a set of specific tasks, but aim to allocate the resources for each service based
on the interaction patterns among the services.

VMs-to-PMs Placement. Various methods have been developed to address the
VM-to-PM mapping problem, including knapsack modelling [9], the mixed integer
programming [10], genetic algorithms [11], and heuristic methods [12]. However,
the work is used to tackle the placement of independent VMs (i.e., there are no
communications among VMs), aiming to minimize the usage of physical machines.
In this paper, we investigate the placement method for interacting VMs.

Our previous work in [13] conducted the research in the same problem domain.
The work in [13] and this work are in the big scope of the same project on inves-
tigating resource management for interacting services in Clouds. Nevertheless,
they focus on completely different aspects of the project. The work in [13] focuses
on computing resources demanded by services, while this work focuses on the
demand for communication resources. The technical contributions in [13] are not
attributed to the current work in terms of both developed IO models and VM
placement algorithms.

3 Modelling Bandwidth Provision

3.1 The Communication Input-Output Model

We consider a cloud system as an economy, and each service hosted on the cloud
as a sector of this economy. Instead of producing goods, cloud services (sectors)

308 C. Chen et al.

produce and exchange/communicate data over the network. Whereas goods in
a real economy are measured by a common currency that is recognised across
different sectors, data produced by services is measured in units of bandwidth
across the network infrastructure. Similar to the production of goods in an econ-
omy as described by Leontief’s model, the cause for the production of data by
services is also classifiable as internal and external demands.

Internal demand is the data produced by a service as a consequence of a call
from another service. Given two services si and sj from service economy S, we
define a consumption coefficient cij as Eq. 2, where di and dj denote the average
data size produced by si and sj respectively, and pij denotes the probability that
one invocation of sj causes one invocation of si. To understand Eq. 2, suppose
sj is able to produce one unit of data per unit of time (e.g. it is allocated with
one unit of bandwidth). Since an invocation of sj produces dj amount of data
on average, sj can be invoked 1/dj times in a unit of time, so that the allocated
bandwidth (one unit) of sj is able to transfer the amount of data produced by
sj . As a consequence, the number of invocations to si is then given by (1/dj)pij .
Therefore, the total amount of data produced by si can be obtained by Eq. 2. As
defined by Eq. 2, cij represents the amount of data produced by service (sector)
si for each unit of data produced by sj in a time unit. This is in line with the
definition of cij used in Leontief’s model.

cij =
1
dj

pjidi (2)

In contrast, external demand in a cloud economy is the data produced by a
service due to the invocation requested by external clients. When a service si is
at the head of a service workflow (e.g., a login service at the start of a workflow),
then the number of times si is invoked by the clients in a time unit (which we
call the arrival rate of external requests for service si and is denoted by λi),
together with the average amount of data that an invocation of si produces (i.e.,
di), determines the amount of data that will be produced by si in a time unit
due to the external demand. Therefore, the external data demand for si, denoted
by ai, can be calculated by

ai = λidi. (3)

This definition is also in line with the definition of external demand as
defined by Leontief’s model. The end clients of the cloud system who trigger
service workflows can be regarded as the open sector of the cloud economy which
demands data production from the services.

From these derivations, we can see that a cloud economy shares many similar
properties to that of a real economy. By Eqs. 2 and 3, we are able to apply the
philosophy of Leontief’s IO model to a cloud setting as follows.

We denote xout
i as size of data produced by si in a time unit in order to

meet both internal and external demand (we use “out” to indicate that these
are the data that need to be sent out from si). We can establish the relation
shown in Eq. 4, where Xout and A are vectors of dimension |S| holding the data
production (xout

i) and external data demands (ai in Eq. 3) of the Cloud economy,

Modelling and Optimizing Bandwidth Provision 309

respectively, and C is the matrix of cij . Equation 4 establishes the interdepen-
dencies within the Cloud economy in terms of data production. xout

i represents
the amount of data that may be transmitted over the uplink network interface of
the PMs that service si is hosted in. Note that if si and the destination service
of some data sent by si are located in the same PM, no uplink bandwidth of the
PM needs to be consumed for transferring this part of data. In Subsect. 3.2, we
will present how to handle this situation and determine the bandwidth allocation
for individual VMs that collectively host service si.

Xout = CXout + A (4)

In addition to the economy described by Leontief’s model, which only con-
siders the amount of goods produced by each sector, we need to calculate the
amount of data received by each service in our data demand IO model. This is
because Leontief’s model does not consider the additional cost associated with
a service receiving the data through its host PM’s downlink network interface.

Among xout
i of data sent by si, the amount of xout

i pij will be sent to sij . Let
c′
ij denote the probability that a unit of data produced by si is to be received

by sj . Then c′
ij can be calculated as xout

i pij

xout
i

= pij . We denote xout
ij as the size of

data transmitted from si to sj in a time unit and xin
ji as the size of data received

by sj from si in a time unit, then we have

xin
ji = xout

ij = c′
ijx

out
i . (5)

Additionally, we denote xin
i as the size of data consumed by si (i.e., received

from all services) in a time unit. xin
i can then be calculated by Eq. 6, where

Xin is the vector of xin
i and C ′ is the matrix of c′

ij . Equation 6 establishes the
relationship between data production (out) and consumption (in).

Xin = C ′Xout. (6)

3.2 Bandwidth Provision for VMs

From the CIO model, we can derive the amount of data that are communicated
by each service. In this section, our objective is to translate this quantity into
actual bandwidth provision for individual VMs hosting a service. In a cloud
system, each service is hosted by a collection of VMs. We assume that the service
is the only service hosted in each of the VMs. This assumption is reasonable since
it is a typical setting in Clouds to host different Cloud services in different VMs
so as to provide the isolated service environments.

When two VMs of a pair of services are located on the same PM, data may
be transmitted locally and thus does not consume the VMs’ physical bandwidth.
However, in order to take advantage of this local data transmission channel, the
local ratio between the numbers of VMs of two service needs to match their
global ratio. This is explained in detail below.

Given a pair of services si and sj from S, Vi and Vj denote the total number
of VMs in the cloud for hosting these two services, respectively. Consequently,

310 C. Chen et al.

the amount of data sent from a V M i (V M i denotes a VM that hosts service si)

to service j can be calculated by xout
ij

Vi
, where xout

ij is the data sent by service i
to j in a time unit, which is calculated by Eq. 4. Given a PM PMk, vik and vjk

denote the number of V M i and V M j in PMk, respectively. Then in PMk, the
amount of data that are communicated by V M is to service j is vik

xij

Vi
. If vik

vjk

(i.e., the local ratio of the number of V M i to the number of V M j in PMk) is
no greater than Vi

Vj
(i.e., the global ratio of the number of V M i to the number of

V M j in the cloud), all data sent by V M is in PMk (the VMs that host service
i in PMk) to service j can be handled by V M js in PMk. Therefore, there is
no need to consume the bandwidth of V M i (or V M j) for sending (or receiving)
these data. For example, assume Vi and Vj are 20 and 50, respectively. If in PMk,
vik is 2 and vjk is 6, then there are more than fair share of V M j (which is 5) in
PMk to handle the data sent by V M i in the same machine (since 2/6 < 20/50).

On the contrary, if the local ratio is greater than the global ratio, which
means that there are not adequate V M j in PMk to handle the data sent by
V M i in PMk. The portion of data that cannot be handled by V M j in PMk,
denoted by yijk, have to be sent by V M i to V M j in another PM, PMl, and
therefore consume the uplink bandwidth of V M i and the downlink bandwidth of
V M j . yijk can be calculated by Eq. 7. Equation 7 essentially compares whether
the local ratio is no greater than the global ratio. If so, yijk is 0. Otherwise, Eq. 7
calculates the data that si has to send out after deducting the portion of data
that can be handled by V M j in the same machine.

Since yijk is the data communicated in a time unit, yijk is essentially the
bandwidth that has to be allocated to the V M is in PMk for sending data to
service sj . Therefore, yijk

vik
is the uplink bandwidth that has to be allocated

to each V M i in PMk for sending the data to sj , while yijk

vjl
is the downlink

bandwidth allocated to each V M j in PMl for receiving yijk. The total uplink
bandwidth that needs to be allocated to V M i in PMk can be calculated by∑

sj∈PMk
yijk.

yijk = max{vik
xij

Vi
(1 − vjk(Vi/Vj)

vik
), 0} (7)

Given a VM-to-PM mapping, denoted by M, the total uplink communication
bandwidth generated by M can be calculated by Eq. 8, where yijk is the amount
of data that are sent from V M i (hosting service i) in PMk (consuming the
uplink bandwidth of PMk) to V M j (hosting service j) in other PMs. The total
downlink bandwidth generated by a VM-to-PM mapping can be calculated in a
similar way.

C(M) =
∑

k

∑

j

∑

i

yijk. (8)

4 The Communication-Oriented Simulated Annealing
Algorithm

In the classical SA approach, an initial solution is first generated (a solution is
encoded) and the neighbourhood searching routine is then applied to generate

Modelling and Optimizing Bandwidth Provision 311

new suitable candidate solutions. A cost function and the metropolis criterion
[14], which models the transition of a thermodynamic system, are used to deter-
mine the quality of the solutions and guide the searching direction so that better
solutions can be gradually generated until the stopping criterion is met.

In this section, we design a Communication-oriented SA (CSA) algorithm
that aims to find the VM-to-PM mapping with the minimal bandwidth provision
for all VMs. In the CSA algorithm, the initial solution is set as the VM-to-
PM mapping that is generated by the MinPM algorithm [9] (i.e., the algorithm
that produce the VM-to-PM mapping that uses the minimal number of PMs to
host VMs). The amount of bandwidth provision calculated in Eq. 8 is used as
the cost function for the CSA algorithm. The CSA algorithm adjusts the VM-
to-PM mapping, aiming to reduce the bandwidth provision without increasing
the number of PMs. This section presents the encoding of the solution, the
neighbourhood searching routine and the flow of CSA algorithm in this paper.

Encoding the Solution. In the SA algorithm, a solution is encoded as a two-
dimensional array, A, in which an element a[i][j] represents how many VMs of
Service sj there are in PMi. Note that this encoding method does not differenti-
ate the VMs for the same service. This way, the number of VMs does not affect
the complexity of the algorithm. Consequently, the proposed SA algorithm can
find the good VM-to-PM mappings efficiently.

Neighbourhood Searching. In SA, the design of neighbourhood searching
routine is critical for generating good solutions with good efficiency. This sub-
section presents the method to conduct the neighbourhood searching. Two prob-
abilities, pp and ps, are set to represent the possibility that the VM mapping of
a service in a PM is adjusted. To improve the efficiency, the following design is
adopted for the neighbourhood searching. The neighbourhood searching routine
randomly selects N × pp PMs (N is the total number of PMs) to adjust the VM
mappings of some services in these PMs. For a selected PM, the routine further
randomly selects M × ps services (assume M is the number of services in the
PM) and the VM mappings of these services will be adjusted. For service si in
PMj , its VM mapping is adjusted in the following way. First, the neighbourhood
searching routine randomly selects another PM, PMk, and then randomly selects
a service, sl (l �= i), in PMk. The routine then tries to swap the VMs between
si and sl. In order to render a valid swap, the routine calculates the maximum
number of VMs that can be swapped between the two services, which can be
calculated using Algorithm 1, where fk and fl are the spare resource capacity in
PMk and PMl, respectively, vik is the number of V M i in PMk, swapik is the
maximum number of V M i that can be swapped in PMk. A valid swap is one
after which the total capacity of every type of resource (the resource types of
CPU utilization, memory and bandwidth are considered in this work) allocated
to the VMs in either PM does not exceed the total physical resource capacity
of the PM. This validity rule guarantees that the number of required PMs does
not increase. The neighbourhood searching is presented in Algorithm 2.

As discussed above, the neighbourhood searching routine randomly selects
N ×pp PMs (N is the total number of PMs) and in each selected PM, the routine

312 C. Chen et al.

Algorithm 1. Calculating maximum
number of VMs that can be swapped
1: if V M i

k × vik < V Mj
l × vjl then

2: Swapik = vik

3: Swapjl = [
V Mi

k×vik+fk

V M
j
l

]

4: else if V M i
k × vik > V Mj

l × vjl then
5: Swapjl = vjl

6: Swapjk = [
V M

j
l

×vjl+fl

V Mi
k

]

7: else
8: Swapik = vik
9: Swapjl = vjl

Algorithm 2. Neighbourhood search-
ing
1: Randomly select �pp × N� PMs
2: for each of these PM do
3: Randomly select ps × S |k services in

PMk
4: for each of services do
5: Randomly select a PM, PMl(l �= k)

and a service j (j �= i) in PMi
6: Call Algorithm1 to calculate maxi-

mum number of VMs in V M i and
V Mj that can form a valid swap

7: Swap calculated number of VMs
between si in PMk and sj in PMc

8: Return new VM-to-PM mapping, M′

further selects M ×ps services to adjust their VM mappings. Therefore, the time
complexity of Algorithm 2 is O(pp × N × ps × M).

Simulated Annealing. Algorithm 3 outlines the entire SA process aiming to
find the optimal VM-to-PM allocation. In the algorithm, T is the initial temper-
ature of the SA process, which is typically set as 1000. factor is the cool-down
factor of the SA process, which is typically set as 0.85. In each iteration, M is
the current VM-to-PM mapping. Algorithm 2 is called to generate a new candi-
date VM-to-PM mapping, M′ (Line 4). Equation 8 is then applied to calculate
the communication cost (C′(M′)) of the new mapping M′ (line 5). If C′(M′) is
better(smaller) than that of the current mapping, the algorithm accepts the new
mapping and the new mapping becomes the current mapping (Line 6–8). Oth-
erwise, the metropolis criterion, calculated by exp(−ΔC(M)

T), is used to decide
whether this new but worse VM mapping should be accepted. If the calculated
metropolis criterion is greater than a float number randomly generated between
0 and 1 (Line 7), M′ is accepted. Otherwise, the current mapping remains intact.
The iteration repeats until the current mapping stays unchanged for a certain
number of consecutive iterations (counted by j) or the number of iterations
(counted by i) reaches a pre-set number, kmax1 and kmax2 in the CSA (Line 2).

There are at most kmax2 iterations in the “while” loop in Algorithm 3. In
each iteration, calling Algorithm 2 dominates the time spent in an iteration.
Therefore, the time complexity of Algorithm 3 is O(kmax2ppNpsM).

5 Performance Evaluation

We have conducted the simulation experiments to evaluate the effectiveness of
the CIO model and the CSA algorithm developed in this work.

The synthetic trace is generated in the simulation experiments. A set of 500
services are generated. A service is defined as the start service, from which all
workflows in the trace start. Another service is defined as the end service, which

Modelling and Optimizing Bandwidth Provision 313

Algorithm 3. The CSA Algorithm
Require: M
1: i = 0, j = 0
2: while j ≤ kmax1 or i ≤ kmax2 do
3: T ← T × factor
4: M′ ← Call Algorithm2
5: C′(M′) ← Call Eq. 8
6: ΔC(M) ← C′(M′) − C(M)

7: if ΔC(M) < 0 or exp(
−ΔC(M)

T
) >

R(0, 1) then
8: M ← M′
9: j = 0
10: else
11: j = j + 1
12: i = i + 1

Fig. 1. Accuracy of the CIO model using
synthetic traces

means that when the workflow reaches to this service, it will not invoke further
services. The degree of parallelism (denoted by DP) is set, which is 3 by default,
when generating the workflow instances for the synthetic trace. For all services
except the end service, after a service (e.g., si) invoked by a task is completed,
it further randomly invokes DP (e.g., 3) services. The roulette wheel method
is used to randomly determine which DP services are selected based on pij . In
the synthetic trace, the value of pij is randomly set from the range of [0.001,
0.003] with the average of 0.002 (i.e., 1/500, where 500 is the number of services
generated in the trace). The workflow instance stops growing when all branches
in the workflow reach the end service. The technique presented in [13] is used
to calculate the number of VMs for each service. The strategy presented in [9]
is used to generate the initial VM-to-PM mapping with the minimal number
of PMs.

5.1 Accuracy of the CIO Model

It is straightforward to determine pij for the synthetic trace since a service
randomly invokes another service. With pij , we apply the bandwidth IO model to
calculate the bandwidth allocated for each service. In the simulator developed in
this work, we allocate the calculated bandwidth to the services and then run the
simulation experiments. We record the amount of data that are communicated by
each service. If the proposed bandwidth IO model is effective, then the amount
of data that are communicated by each service in a time unit in the simulation
experiment should equal to the bandwidth allocated to each service. The results
are shown in Fig. 1. The average percentage of discrepancy between the CIO
model and simulation experiments is 1.3 %, which suggests that the CIO model
is able to capture the bandwidth demands accurately.

314 C. Chen et al.

5.2 The Effectiveness of CSA

The experiments in this subsection investigate the effectiveness of the CSA algo-
rithm. In the experiments, we first used the methods proposed in [9], which we
call the MinPM algorithm in this paper, to obtain the VM-to-PM mapping that
uses the minimal number of PMs to host the VMs. We then apply the proposed
SA algorithm to further adjust the VM-to-PM mapping in order to reduce the
communication cost without increasing the number of PMs. We also used the
greedy method presented in [15] to perform the VM-to-PM mapping and com-
pared the results against those generated by the proposed SA. In the greedy
algorithm, all services are ranked in the decreasing order of their communica-
tion intensity (i.e., the data that have to be communicated by a service in this
paper). The greedy algorithm first place the VMs of the first service (i.e., the
one with most communication intensity) on PMs, with each PM having the same
number of VMs or having at most ±1 difference if it can not be evenly divided).
Then the greedy algorithm selects the next service, s2, and tries to place its VMs
to PMs so that the local ratio of the number of VMs of s1 to that of s2 in a PM
equal (or is the closest) to the global ratio of the total number of VMs of s1 to
that of s2. The procedure repeats until all VMs are mapped.

(a) (b) (c)

Fig. 2. Comparing CSA with other existing algorithms using synthetic trace

We increase the arrival rate of the generated workflows and use the technique
presented in [13] to calculate the number of VMs for each service under different
arrival rates. The experimental results are shown in Fig. 2(a, b and c). It can be
seen that CSA outperforms other two algorithms in all cases.

References

1. Amazon case study: Nasaq OMX. http://goo.gl/28wfGV
2. Leontief, W.: Input-output analysis. New Palgrave Dictionary of Economics (1987)
3. Jalaparti, V., Ballani, H., Costa, P., Karagiannis, T., Rowstron, A.: Bridging the

tenant-provider gap in cloud services. In: ACM SOCC (2012)
4. Meng, X., Pappas, V., Zhang, L.: Improving the scalability of data center networks

with traffic-aware virtual machine placement. In: IEEE INFOCOM (2010)
5. Popa, L., Kumar, G., Chowdhury, M., Krishnam. A., Ratnas, S., Stoica, I.: Fair-

cloud: sharing the network in cloud computing. In: ACM SIGCOMM (2012)

http://goo.gl/28wfGV

Modelling and Optimizing Bandwidth Provision 315

6. Ballani, H., Costa, P., Karagiannis, T., Rowstron, A.: Towards predictable data-
center networks. In: ACM SIGCOMM (2011)

7. Ballani, H., Jang, K., et al.: Chatty tenants and the cloud network sharing problem.
In: Proceedings of NSDI2013 (2013)

8. Jiang, J.W., Lan, T., et al.: Joint VM placement and routing for data center traffic
engineering. In: IEEE INFOCOM (2012)

9. Hermenier, F., Lorca, X., Menaud, J.-M., Muller, G., Lawall, J.: Entropy: a con-
solidation manager for clusters. In: 2009 ACM SIGPLAN/SIGOPS (2009)

10. Petrucci, V., et al.: A dynamic optimization model for power and performance
management of virtualized clusters. In: Proceedings of e-Energy 2010 (2010)

11. He, L., Zou, D., et al.: Developing resource consolidation frameworks for moldable
virtual machines in clouds. Future Gener. Comput. Syst. 32(1), 69–81 (2013)

12. Hu, L., Jin, H., Liao, X., Xiong, X., Liu, H.: Magnet: a novel scheduling policy for
power reduction in cluster with virtual machines. In: Cluster (2008)

13. Chen, C., He, L., Chen, H., Sun, J., Gao, B., Jarvis, S.: Developing communication-
aware service placement frameworks in the cloud economy. In: Cluster (2013)

14. Van Laarhoven, P.J., Aarts, E.H.: Simulated Annealing. Springer, Heidelberg
(1987)

15. He, L., Jarvis, S.A., Spooner, D.P., Jiang, H., Dill, D.N., Nudd, G.R.: Allocating
non-real-time and soft real-time jobs in multiclusters. In: TPDS (2006)

	Modelling and Optimizing Bandwidth Provision for Interacting Cloud Services
	1 Introduction
	2 Background and Related Work
	3 Modelling Bandwidth Provision
	3.1 The Communication Input-Output Model
	3.2 Bandwidth Provision for VMs

	4 The Communication-Oriented Simulated Annealing Algorithm
	5 Performance Evaluation
	5.1 Accuracy of the CIO Model
	5.2 The Effectiveness of CSA

	References

