
Developing Communication-aware Service

Placement Frameworks in the Cloud Economy

Chao Chen!, Ligang He!, Hao Chen2, Jianhua Sun2, Bo Gao!, Stephen A. Jarvis!
1. Department of Computer Science, University of Warwick, Coventry, CV4 7AL, United Kingdom

2. School of Information Science and Engineering, Hunan University, Changsha, 410082, China

Email: Iiganghe@dcs.warwick.ac.uk

Abstract-In a Cloud system, a number of services are often
deployed with each service being hosted by a collection of Virtual

Machines (VM). The services may interact with each other and
the interaction patterns may be dynamic, varying according to
the system information at runtime. These impose a challenge
in determining the amount of resources required to deliver a
desired level of QoS for each service. In this paper, we present
a method to determine the sufficient number of VMs for the
interacting Cloud services. The proposed method borrows the
ideas from the Leontief Open Production Model in economy.
Further, this paper develops a communication-aware strategy to
place the VMs to Physical Machines (PM), aiming to minimize
the communication costs incurred by the service interactions. The
developed communication-aware placement strategy is formalized
in a way that it does not need to the specific communication
pattern between individual VMs. A genetic algorithm is developed
to find a VM-to-PM placement with low communication costs.
Simulation experiments have been conducted to evaluate the
performance of the developed communication-aware placement
framework. The results show that compared with the placement
framework aiming to use the minimal number of PMs to host
VMs, the proposed communication-aware framework is able to
reduce the communication cost significantly with only a very little
increase in the PM usage.

I. INTRODUCTION

Numerous Cloud services may be deployed in a Cloud
system. These services are often not isolated. After a client
invokes a service (which is the external requests), the service
may request further actions from other services in the Cloud
system (which is the internal requests) during or after its execu
tion. The interactions among the services, which are demanded
by the mix of the external and internal requests, are not static
and may vary according to dynamic system information at
runtime. These impose a challenge in determining the amount
of resources required for each of these services, in order to
deliver a desired level of Quality-of-Service (QoS).

The services in a Cloud system are typically hosted in
VMs. Therefore, determining the suitable resource quantity
for the services comes down to determining the resource
capacities allocated to the VMs that host the services. There
are some existing works building the performance model for
the processing capacity of a VM , i.e., establishing the relation
between a VM's processing capability and the amount of the
resource capacities (such as CPU percentage, memory size,

* Dr. Ligang He is the correspondence author

978-1-4799-0898-1/13/$31.00 ©2013 IEEE

network bandwidth) allocated to the VM [1] [2]. For example,
Amazon EC2 offers small, medium, large and extra large VMs
[3]. The performance model established in the existing work
can calculate the processing capability of these different types
of VMs for a type of tasks.

The work in this paper makes use of the performance
model of a VM established in the literature. Assuming that the
processing capability of one VM is known, this paper presents
a method to determine the sufficient number of VMs for
interacting services in a Cloud system. The proposed method
borrows the ideas from the Leontief Input-Output Model in
economy (called the 10 model in this paper). The input-output
model conducts the input-output analysis for different industry
sectors in an economy. It is able to capture the consumption
relations among different sectors and calculate the equilibrium
level of production for each sector, so as to satisfy both external
demands from the open sector (e.g., people) and internal
demands due to the consumptions relations among individual
sectors in an economy. Moreover, the 10 model is able to
analyze the impact of the increase in the external demand
for a particular sector on the production of all sectors in the
economy.

The behaviors of the interacting services in a Cloud system
bear the similarity with the behaviours of different industry
sectors in an economy. A service supplies resources, which are
consumed by clients and also by other services due to service
interactions. To the best of our knowledge, this paper is the
first one in literature that applies the 10 model in economy to
formalize and solve the resource demand problem in Clouds.

Further, when the services interact with each other, data
may be communicated between them. If the VMs that host
the services with frequent communications among themselves
can be placed to the same Physical Machine (PM), the com
munication cost could be significantly reduced.

There is the existing work in literature investigating the
VM-to-PM placement problem [4] [5] [6] [7] [8]. However,the
existing work either focuses on consolidating the independent
VMs (i.e., there are no interaction between VMs) into re
sources, i.e., finding a VM-to-PM placement that can minimize
the number of PMs used to host the VMs, or requires to
know the specific communication patterns between individual
VMs. Different methods have been developed to model such
a VM-to-PM placement problem. For example, the placement
problem has also been modelled as a knapsack problem [5],
an ant colony optimization problem [7], a mixed integer

programming problem [9] and a genetic algorithm [6]. Then
the existing solvers and the bespoke methods were developed
to solve the objective functions for the optimized placement
solutions. Heuristic algorithms have also been developed to
find the placement solutions [10].

This paper develops a communication-aware strategy to
place the VMs that host the interacting services on physical
machines, aiming to minimize the communication costs in
curred by the service interactions. A genetic algorithm is then
developed to find a VM-to-PM placement with significantly
reduced communication costs. In a nutshell, the main differ
ences between our work and the work in literature are that
1) this work aims to find a placement solution to minimize
the communication costs among services and 2) the approach
adopted in this work does not need to know the specific
communication pattern between individual VMs. The more
detailed differences are discussed in II-B.

We have also conducted experiments to compare the frame
work proposed in this paper with two existing placement
methods: one striving to use the minimal number of PMs to
host VMs, and the other applying the heuristic approach to
placing VMs. Our experimental results show that the proposed
communication-aware framework significantly outperforms the
heuristic approach in terms of both communication cost and
the number of used PMs, and that comparing with the method
aiming to achieve the minimal number of used PMs, our
communication-aware approach is able to significantly reduce
the communication overhead in the Cloud with only a tiny
fraction of increase in resource usage.

The remainder of this paper is organized as follows.
Section II-B briefly introduces the background knowledge of
the input-output model, and then presents the related work.
Section III presents the workload and system models. Section
IV proposes the method of modelling resource demands of
services in a Cloud economy. The communication-aware VM
placement framework is presented in Section V. Section VI
evaluates the effectiveness of the proposed framework. Finally,
we concluded in Section VII.

II. BACKGROUND AND REL ATED WORK

A. Background of the 10 model

In the 10 model, the economy is divided into sectors.
Each sector produces goods except for the open sector, which
only consumes goods. When a sector produces goods, it
needs to consume the goods produced by other sectors. The
consumption matrix C captures the consumption relations
among sectors. An element Cij in C represents the amount
of goods produced by sector i that have to be consumed by
sector j in order for sector j to produce one unit (e.g., in terms
of US dollars) of goods. The consumption matrix C represents
the internal demands. Assume the column vector D contains
the goods demand from the open sector, which represents the
external demand. The element di in D represents the amount of
goods from sector i required by the open sector. Let the column
vector X be the equilibrium levels of production output that
can satisfy both internal and external demands in the economy.
The element Xi in X represents the equilibrium level of output
by sector i. X must satisfy Eq.l, which may be solved for X
by transfonning it to Eq.2.

X = CX +D (1)

X = (I - C)-l D (2)

B. Related work

The related work of the following three aspects is discussed
in this subsection. In Subsection II-Bl, we discuss the related
work about resource allocation for VMs. Then Subsection
II-B2 discusses the existing techniques to address the VM
to-PM placement. Finally, as introduced in Subsection II-A,
the 10 model needs to know the consumption matrix C.
In the modelling method proposed in this work, the con
sumption matrix corresponds to the interaction relation among
the services in the Cloud. If the interactions among services
are static, it is straightforward to determine the interaction
relation (i.e., calculate the elements, cd, in C. However, as
we discussed in Section I, the service interactions may be
dynamic, depending on the system information at runtime.
An approach to determining the interaction relation among
services is to analyze the invocation trace of each individual
service in the Cloud. In Subsection II-B3, we discuss the
existing techniques regarding this.

1) Resource allocation for VMs: Various methodologies
have been proposed to construct the performance model, i.e., to
establish the relation between the performance of a VM (e.g.,
throughput, the time needed to complete a request) and the
resource capability allocated to the VM (e.g., CPU, memory,
network bandwidth) [1] [2] [11]. For instance, the work in
[2] used layered queuing network to model the response time
of a request in a multi-tiered web service hosted in VM
environments, while hardware resources (e.g., CPU and disk)
are modeled as processor sharing (PS) queues. The work in
[1] modeled the contention of visible resources (e.g., CPU,
memory, 110) and invisible resources (e.g., shared cache,
shared memory bandwidth) as well as the overheads of the VM
hypervisor implementation. The work in [ll] and [12] then
investigates the impact of the network bandwidth allocated to
a set of VMs on their collective performance. In this paper,
we assume that the performance model is already know. In
the simulation experiments, we uses the queuing theory as the
exemplar technique to derive the performance model.

There is also the work addressing resource allocation for a
group of VMs with communications among them [13] [4].
The work in [13] can translate the performance goals of
the tasks submitted by clients to the resource allocation in
terms of the combination of the number of VMs and the
network bandwidth between the VMs. Since different resource
combinations may produce similar performance, the work
further propose a method to select the resource combination
that can balance the resource utilization. The work in [13]
bear similarity with the work presented in this work. The work
in [13] also calculates the number of VMs required to meet
performance goals. The difference is that the work in [13] is
job-oriented (or client-oriented), i.e" to calculate the resource
allocation given the specific tasks submitted by the clients.
However, as we discussed in Section I, service invocations
(i.e., the tasks) may vary according to the dynamic system
information, and it may be difficult to know the full picture of

the tasks/workflows to be run in the Cloud. The work in this
paper is service-oriented, which does not focus on allocating
resources for a set of specific tasks or workflows, but aims
to allocate resources based on the service interaction patterns.
This work does not even have to know the full information of
the tasks/workflows to be run.

2) VM-to-PM placement: The VM-to-PM placement prob
lem mainly aims to consolidate resources and improve resource
utilization [5] [10]. Various methods have been proposed
in literature to address the VM-to-PM placement problem,
including the knapsack modelling [5], the mixed integer pro
gramming [9], the genetic algorithms [6], the ant colony
optimization [7] and the heuristic methods [10]. For example,
the work in [10] develops the heuristic squeeze and release
measures to dynamically redistribute the workloads in the
cluster according to the workload level in each individual
node, so as to minimize the usage of physical machines. The
work in [5] develops a server consolidation scheme, called
Entropy. Entropy strives to find the minimal number of nodes
that can host a set of VMs, given the physical configurations
of the system and resource requirements of the VMs. The
objective is formalized as a multiple knapsack problem, which
is then solved using a dynamic programming approach. In
the implementation, a one-minute time window is set for the
knapsack problem solver to find the solution. The solution
obtained at the end of the one-minute time space is the new
state (new VM-to-PM placement). The work in [6] designed a
genetic algorithm to find a VM-to-PM placement that uses
the minimal number of PMs. However, the above work is
used to tackle the placement of independent VMs (Le., there
are no communications among VMs), aiming to minimize the
usage of physical machines. In this paper, we investigate the
placement of the interacting VMs and focus on finding the VM
placement that can minimize the communication cost.

There is also the work tackling the placement problem for
the VMs with inter-VM communications, aiming to minimize
the communication costs [4] [8]. The work in [4] model such a
VM-to-PM placement as a min-cost network flow problem and
then use the Breadth First Search to find the optimal placement
solution. The work in [8] then uses the classical min-cut graph
algorithm to obtain the optimized placement solution. In order
to model the placement problem as the min-cost network flow
problem or the min-cut graph problem, they need to know the
specific communication pattern between each pair of VMs.
As we have discussed, in some cases, we may not know the
full picture of the submitted workload, and therefore can not
accurately determine the communication pattern between each
individual VM. In this paper, we model the interactions among
the services, and treat a service (and the set of VMs supporting
the service) as a whole without the need to know the specific
communication pattern between each pair of VMs.

3) Anaysis of invocation pattern: There are the existing
techniques to obtain the invocation pattern of the services
[14] [15] [16]. The work in [14] implements a multi-level
probabilistic model to infer the probability of a service call
ing another service. The fundamental idea is to monitor the
packets sent and received by a service, and then compute the
dependency probability between the services by leveraging the
observation that if accessing service B depends on service A,
then packets exchanged with A and B are likely to co-occur.

TABLE I. NOTATIONS

notations Explanation
C consumption matrix
Cij the amount of goods produced by sector i that have to be consumed

by sector j in order for sector j to produce one unit of goods
5 the number of services
Si service i
eij the amount of data that are sent when service Si invokes S j
Pi) the probability that one invocation of Si causes the invocation of Sj
ni physical machine i
VM' a virtual machine hosting service Si
Vik the number of V M� s in ni
Pji the possibility that executing S j causes a further invocation of S i

The work in [15] then uses the k-means clustering technique
in data mining area to analyze the service trace and calculate
the correlation probability between services.

III. WORKLOAD AND SYSTEM MODELS

§ = {81' ... ,8M} denotes a set of M services deployed in
a Cloud. Ai denotes the arrival rate of the requests directly
from the clients for service 8i. Pij denotes the probability
that after service 8i is invoked and executed, service 8i will
further call service 8j. A service is hosted in a set of VMs
(i.e., a virtual cluster). Assume each VM that hosts the same
service (i.e., each VM in a virtual cluster) is allocated with the
same resource capacity (e.g, the proportion of CPU, memory
size, etc). This assumption is reasonable because this is the
normal practice when using a virtual cluster to host a service
[11]. V Mi

denotes a VM that hosts service 8i. There may
be multiple VMs in a PM. We assume that PMs and network
links are homogeneous, i.e, the PMs and the network links con
necting any two PMs in the Cloud has the same performance.
This assumption is reasonable since homogeneous machines
and communication networks are typically used to construct a
Cloud system.

Given the arrival rate of the requests for service 8i and
given V Mi

's resource capacity, there are a number of existing
techniques in literature [1] and [2] to calculate the adequate
number of V MiS that can satisfy the desired QoS in terms of
a particular performance metric (e.g., average waiting time of
the requests, throughput).

Table.! lists the notations used in the paper.

IV. MODELLING RESOURCE DEMANDS OF CLOUD

SERVICES

This section applies the 10 model to formalize and cal
culate the equilibrium level of resource capacity demanded
by the external clients and the interacting services in a Cloud
economy. The constructed model is called the Cloud-IO model
in this paper. In order to apply the 10 model to formalize
a Cloud economy, we have to use the entities in the 10
model (i.e., sector and goods) to represent the entities in Cloud
environments, such as service, request, VM, resource, etc.

In this paper, a service in the Cloud economy is regarded
as a sector in the 10 model while the external clients are
regarded as the open sector, which is straightforward. However,
the challenge is to identify the entity in the Cloud economy
that is suitable to be regarded as goods, and also determine
the consumption relations among services. We first attempted
a straightforward option and use the requests sent by the

clients or the services to represent goods. This option seems to
be intuitive, because a service processes (consumes) requests
from clients and other services, and also generates (produces)
requests to invoke other services. Then the problem comes
down to how to determine the resource capacity for services so
that the requests can be processed in a way that the desired QoS
can be met. However, we later realize that it is not appropriate
to treat the requests as goods. This is because the requests
generated by services are not going to be consumed by the
clients while the goods produced in the 10 model are consumed
by the open sector. In this paper, a group of VMs hosting a
service are regarded as goods produced by the service.

Now we present how to determine the consumption rela
tions among services, i.e, obtain the consumption matrix. Note
that Cij in the consumption matrix C represent the amount
of goods produced by sector i that have to be consumed by
sector j in order for sector j to produce one unit of goods
(e.g., in terms of US dollars). Consider one VM (a unit of
good) of service Sj. 1/Jj denotes the arrival rate of the requests
that one VM of service Sj (i.e., one V Mj) can handle to
deliver the specified QoS. As discussed in Section III, there are
existing techniques to calculate 1/Jj, given the resource capacity
allocated to the VM. We use a function f to represent such
a technique, i.e., Eq.3, where the first parameter represents
service index (i.e., Sj), the second parameter Rj represents
the resource capacity allocated to each VM of Sj (we assume
every VM in the same service has the same resource capacity),
and the third parameter represent the number of VMs of the
service.

(3)

Every time service Sj is invoked, there is the possibility of
Pji that Sj will send a request to further invoke Si. Therefore,
in a time unit one V Mj sends 1/Jj x Pji requests to Si. The
number of VMs that need to be produced by Si to handle the
requests with the arrival rate of 1/Jj x Pji is then equivalent to
the goods produced by service Si that have to be consumed by
service Sj in order for Sj to produce one unit of goods (i.e., one
VM), which is actually Cij in the 10 model. Again, the existing
techniques in literature can calculate Cij based on the arrival
rate of 1/Jj x Pji and the given resource capacity aJlocated to
each V Mi. We use a function g to represent such a technique,
i.e., Eq.4, where the first and second parameters have the same
meanings as those in Eq.3, and the third parameter represents
the arrivaJ rate of the requests.

(4)

In doing so, we have established the consumption matrix
in the Cloud-IO model. Let Ai be the rate at which the clients
(open sector) send the requests to service Si. Then we can use
the g function in Eq.4 to calculate the number of V Mi

that
have to be produced by Si to process the requests with the
arrival rate of Ai, which is di in the column vector D in the
10 model. Namely, di can be obtained using Eq.S.

di = g(i, R, Ai) (5)

By doing so, the external demand vector D is obtained.
X = [Xl"",Xi, ... ,XM]T denotes the column vector that
represents the number of VMs required for each of M services
in the Cloud economy. X can be caJculated by Eq. 2.

V. THE COMMUNICATION-AWARE VM PL ACEMENT

Section IV calculates the number of VMs required for each
service in the Cloud. This section investigate the issues of
mapping all the VMs obtained in Section IV to PMs. The
VM-to-PM mapping in literature often focuses on minimizing
the number of PMs used to accommodate the VMs, so as to
minimize the resource and/or energy consumption. However,
in this paper, there is the possibility that after a service is run,
it may send a request to another service for further actions.
Some data may be sent along with the request. If the VMs
that host the different services with frequent communications
can be placed in the same PM, then the communication cost
could be reduced. This section develops a framework to find
the VM-to-PM mapping that minimizes the communication
cost in the Cloud.

According to the Cloud-IO model, Cij represents the num
ber of VMs that need to be produced by Si to handle the
requests send by one VM in Sj. Therefore, if the ratio of the
number of V MiS to the number of V Mj in PM nk, denoted
as (Xijk, is no less than to Cij, then the requests (along with
the data) sent by the V Mj s can be handled by the V MiS in
the same PM without breaching the QoS of Si, and therefore
eliminates the necessity to send the requests and data to the
V Mi

in a different PM. On the contrary, if (Xijk is less than Cij,
then a proportion of the requests sent by the V Mj s in nk have
to be processed by V MiS in a different PM. The greater the
difference between Cij and (Xijk is, a larger proportion of the
requests and data sent by V MJ s in nk have to be sent out of nk
and therefore a higher communication cost in the Cloud. The
communication-aware service placement framework developed
in this paper is based on this insight and aims to find a VM
to-PM mapping with the minimaJ communication cost in the
Cloud.

A. Formalizing the problem

This section models the total communication cost incurred
by an arbitrary VM-to-PM mapping in the Cloud. As discussed
above, when (Xij k is less than Cij, the communication wi]]
occur between nk and another PM where there are V M'.
Vik denotes the number of V MiS in nk, given a VM-to-PM
mapping M. The communication cost incurred by the mapping
M, denoted as C(M), can be calculated by Eq. 6 and Eq.7. In
Eq.7, the term (f(j ,Rj,Vjk) x Pji - !(i ,Ri,Vik)) calculates
that the amount of requests that are sent from Sj in PM nk
to Si in a time unit, but cannot be handled by V M's in nk
(if (Xijk < Cij) in order to maintain the QoS. Therefore, these
requests have to be sent to be processed by V MiS in a different
PM. The number of these requests times eji is then the total
amount of data that have to be communicated in the Cloud
caused by the inadequate resource capacity of Si in PM nk
comparing with that of Sj in the same PM. Since we assume
that the communication network in the Cloud is homogeneous,
we do not have to consider which PM these data will be sent
to. The communication cost is then the sum of aJl these data

that have to be sent out of the local PM by any service in the
Cloud, which is Eq.6.

N M M

C(M) = LLLf3ijk
k=lj=li=1

{ eji x (f(j,Rj,Vjk) x Pji --: !(i ,Ri,Vik))
f3ijk = l f (Xijk < Cij

o otherwise

(6)

(7)

The objective is to find a VM-to-PM mapping such that
C(M) is minimized, subject to certain constraints. This can
be formalized as Eq. 8, where Xi is the number of V MiS
obtained in Section IV.

miminize C(M),
N

subject to: Vi: 1 ::; i ::; M, L Vik = Xi (8)
k=1

B. Designing the genetic algorithm

A Genetic Algorithm, called CAGA (Communication
Aware Genetic Algorithm), is developed in this paper. CAGA
tries to find the optimal mapping with the least communication
cost. In a typical Genetic Algorithm (GA), a solution is
encoded and then the crossover and mutation operations are
applied to evolve the solutions. Moreover, a fitness function
is used to judge the quality of the solutions and guide their
evolution direction so that better solutions can be gradually
generated over generations. In the GA developed in this paper,
the communication cost defined in Eq.6 is used as the fitness
function. This section mainly presents the encoding of the
solution, the crossover and the mutation operations designed
in our GA.

1) Encoding the solution and fitness function.: In CAGA,
a solution is a VM-to-PM mapping. It is encoded as an one
dimensional array, denoted as A. An element ai in A holds the
index of a VM. Br denotes the capacity of the r-th type of
resources in a PM. Given an encoded solution, the PM that a
VM is mapped to is determined in the following way. Starting
from the first element in the solution, the VMs are placed into
P MI in the order of their positions in A, until the total capacity
of the VMs starts to exceed the capacity of P MI. The VMs are
then placed into the next PM. Formally, if the first k PMs have
been fully occupied and the VM in ai (i.e., V MaJ is the first
VM that cannot be placed into P Mk any more, the VMs in
the positions from ai to aj-I should be placed into P Mk+I. j
can be determined using Eq. 9, in which br(au) is the capacity
of the r-th type of resource allocated to the VM with the index
of au. For each of R types of resource in consideration, Eq. 9
obtain the least jr such that the total capacity of that resource
of the VMs from ai to ajr begins to exceed Br. Then j is
the minimum number among jr (1 ::; r ::; R). The procedure
repeats until all VMs have been placed into PMs. By doing
so, CAGA knows which PM a VM is placed into.

j = min{jrll ::; r ::; R}
j,

subject to: L br(au) > Br
(9)

u=i

In the encoding, CAGA starts to place a VM to a new PM
only when the current PM does not have enough remaining
capacity to host the VM. Therefore, the method used by
CAGA to encode and calculate the VM-to-PM mapping will
not generate excessive spare capacity in PMs, and therefore
reduce the number of PMs used to host VMs. Indeed, our
experiments show that the number of PMs used by CAGA is
very close to that obtained by the VM-to-PM mapping method
aiming to use the minimal number of PMs to host VMs.

CAGA aims to find a VM-to-PM mapping with minimal
communication cost. Therefore Eq. 6 that calculates the com
munication cost of a mapping is used as the fitness function
of a solution.

2) Selecting solutions.: In GA, the solutions need to be
selected from the current generation of solutions to perform
the crossover and the mutation operations. CAGA applies
the tournament method [17] to select the solutions used to
generate next generation of solutions. The tournament method
is as follows. Assume there are h solutions in one generation.
Each time, CAGA randomly selects k solution (k is called
tournament size) from the current generation. Then CAGA
takes the one with the lowest communication cost among these
k solutions and uses it as one parent solution in the crossover
operation. The same way is used to obtain the other parent
solution. Then the crossover operation, which is presented in
subsection V-B3.C, is performed over the two parent solutions
to generate two child solutions. The procedure repeats until
there are h solutions in the next generation.

3) Crossover and mutation: The two-point crossover is
used in CAGA. In the crossover, two points are randomly
selected for two parent solutions to divide each parent into
three portions. All VMs in the middle portion are swapped
between the parent solutions. The resulting two solutions are
children solutions in the new generation. But such a swap may
cause repetitive VMs in a child solution, i.e., there may be two
VMs with the same index in one solution. In order to eliminate
such repetitive VMs, the swapping action is performed in the
following way in CAGA. At position i in the middle portion of
both parents, ali and a2i are the indexes of VMs in parent 1
and parent 2, respectively. In parent 1, the crossover operation
finds the VM with the index of a2i and swap ali and a2i.
In parent 2, similarly, the crossover operation finds the VM
with the index of ali and swap a2i and ali. Such swapping
is performed at every position in the middle portion of two
parents. By doing so, we effectively swap the middle portions
between parents, and the resulting children solutions will not
have the repetitive VMs.

After crossover, the mutation operation is performed on the
two newly generated child solutions. A mutation probability (j
is set. For each VM in a child solution, there is the probability
of (j that the VM will swap the positions with another randomly
selected VM in the child solution. The mutated child solutions
become the solutions in the new generation.

VI. PERFORMANCE EVALUATION

We have conducted simulation experiments to evaluate
the performance of the proposed communication-aware frame
work. A pool of S Cloud services are assumed in a Cloud.
In the simulation experiments of this work, the workflows
are generated to simulate the interactions among services. In
real systems, we typically do not know the entire invocation
work flows across multiple services in the Cloud. In this case,
the service interaction patterns, i.e., Pji in Table I, can be
obtained by analyzing the invocation trace of each individual
service in the Cloud, or analyze the source code of a service
and its execution flow.

With the information of the generated workflows, Pji
can be calculated as follows. A workflow has h nodes with
the random topology. A node in a workflow represents the
invocation of a service randomly selected from the service
pool. Therefore, a service may appear multiple times in a
workflow. A link from service (node) Si to Sj represents that
after Si is run, Si sends a request to further invoke Sj. The
weight of a link represents the amount of data that needs to
be sent from Si to Sj when Si invokes Sj. A workflow has a
entry service (the first service that has to been invoked in the
workflow). External requests arrive to invoke the entry service,
which is regarded as the external demand. The arrival rate of
the external requests to workflow Wi is denoted as Ai. The
invocations among services inside the workflow is regarded
as internal demand. With the topology of Wi and Ai, we can
easily calculate the following variables for Wi: 1) the rate at
which Sj is invoked (denoted as Ai (Sj) ; 2) the rate at which Sj
invokes Sk (denoted as Ai (Sj, Sk) ; 3) the the amount of data
sent from Sj to Sk in a time unit (denoted as ei (Sj, Sk) ' In Wi,
the probability of Sj invoking Sk (denoted as Pi (Sj, Sk) can be

calculated as \(is(';;)k). If the number of different workflows

generated in the simulation is W, then the probability of Sj
invoking Sk (i.e., Pjk in TableI) can be calculated as Eq.lO.
The total amount of data sent from Sj to Sk (denoted as
Ejk) in a time unit can be calculated as Eq.ll, while the
total arrival rate of the requests to Sj, denoted as Aj, can
be computed using Eq.12. In the experiments, three types of
workflows are generated in the experiments: communication
intensive, computation-intensive and general workflow. In
the communication-intensive, computation-intensive, and gen
eral workflow, eij is randomly obtained from the range of
[min_comme, maxJomme], [min_compe, max_compel and
[min�ene, max�ene], respectively. The computation time of
a node in all workflows is randomly selected from the range of
[minJomp, maxJomp] with the average value of avgJomp.

(10)

W

Ejk = 2)Ai x ei (sk, Sj)) (11)
i=l

w

Aj
= 2:)Ai X Ai (Sj)) (12)

i=l

TABLE II. EXPERIMENTAL PARAMETERS

Parameters I Value
S 40
B 50
[min comme, max comme] [20,30]
[[min...,gene. max...,gene] [10,20]
avg comp 15
h(thenumbero jtask sinawor k j low) 40
W 3
lb min], [b max] [5, 15]
[min compe, max compe] [2,8]
[min comp, max comp] [10.20]
slack 20%
8 (mutation probability) 0.2

There are the existing techniques [1] to obtain the function
f in Eq.3. The value of the function f is the processing rate
of a VM. In the experiments, we apply the queuing theory
[18] to obtain the g function. Assume that the external requests
arrive following the Poisson process, and the computation time
of a service and the communication time of sending data
between services follow the exponential process. According
to the queuing theory, the average response time of service
si, denoted as Ti, can be calculated by Eq.13, where I Si l is
the number of VMs that is used to host Si, {li is the mean
process rate of a VM hosting Si (which is the inverse of mean
computation time of an invocation in the VM of Si and is
actually the value of the f function) and Pn is the probability
that the number of requests being processed in the virtual
cluster is no less than n. Assume the QoS of service Si is that
the average response time of an invocation of the service is no
more than qi. qi is normally set as avg_comp x (1 + slack).
Given Ai

and qi, we can calculate from Eq.13 the minimum
I Si l that satisfies the QoS, which is the g function in EqA
and Eq.5. pjk has been calculated in Eq.lO. Therefore, cd in
the consumption matrix can be calculated using EqA. With the
arrival rate of the external requests, we can apply the queueing
theory to calculate the number of VMs required to serve the
external requests, which is D in Eq.1. Finally, the number of
VMs allocated to each service can be calculated using Eq.2.

1 1
Ti = - +Pn .

{li I Si l X {li - N
(13)

The capacity of a physical machine is set to be B. The
resource capacity allocated to a VM in Si is set to be bi, which
is randomly selected from the range of [b_min, b_max]. Unless
otherwise stated, the value of the experimental parameters are
set as in Table II.

The existing work on placing VMs to PMs mainly focuses
on achieving the minimum number of PMs used to host the
VMs [5] [10] (which is called the Min-nodes algorithm in
this paper), assuming that the VMs are independent with each
other. The CAGA framework developed in this paper takes the
service (VM) interactions into account. The Min-nodes method
presented in [5] models the VM-to-PM placement as the bin
packing problem and then uses the existing solver to solve
the problem for the VM-to-PM placement that minimizes the
usage of PMs. In the experiments, we compared CAGA with
the Min-nodes algorithm in terms of communication cost and
the number of used PMs. Moreover, we compared CAGA with
a heuristic VM-to-PM placement algorithm. In the heuristic,

12 30
�10 � 25 "= 0.2

'0 8 '0 20 - "=0.6
Ii; 6 "

.D 1; 15
� 4 E

E10 " 2 " J:; .J:; 5 f- f- 0 10 20 30 40 0 10 20 30 40 Service Index Service Index
(a) (b)

50
�40 i'40

�30 �30 "
�20 .D !5 20 E c �10 1! 10

>- -E

10 20 30 40 10 20 30 4C
Service Index Service Index

(c) (d)

Fig. 1. Impact of the increase in external demands; a)computation-intensive
workflow; b) general workflow; c) communication-intensive workflow; d) the
three types of workflow combined.

the VMs from different services are placed in a PM in a round
robin fashion [19]. Starting from so,the heuristic algorithm
places a VM in Si to the PM, then places a VM in S(i+1)%S to
the PM, until the PM cannot accommodate more VMs. Then
the VMs are placed to a new PM in the same fashion, except
for starting from the VM that cannot be placed to the previous
PM.

A. Impact of the increase in external demands

The experiments presented in this subsection investigates
the impact of service interactions on resource capacity allo
cated to each service. Fig.l(a, b and c) show the number of
VMs allocated to each service under different arrival rates of
extemal requests for communication-intensive, computation
intensive and general workflows, respectively. Fig.ld shows
the the number of VMs allocated to each service for the three
work flows combined. The number of VMs is obtained using
the Cloud-IO model. As can be seen from Fig.l(a, b and c),
when the arrival rate of external requests increases, not only the
number of VMs allocated to the entry service of the workflow
increases (Sl in the figures), but that allocated to other services
in the workflow also increases. The level of increment in some
services is even much greater than that in the entry service.
With the Cloud-IO model, we can quantitatively obtain the
impact of the increase in external demands on the resource
requirements on each service in the Cloud. For example, in
Fig 1 b, when the arrival rate of the external requests increase
from 0.2 to 0.6, it imposes the biggest resource burden on
service S27, whose VM quantity increases from 10 to 28.

B. Comparing CAGA with the existing placement methods

This subsection compares CAGA with two existing VM
to-PM placement methods: Min-nodes [5] and the round
robin heuristic [19]. Fig.2(a, b and c) present the results for
computation-intensive, general and communication-intensive
workflows, respectively. It can be seen from these figures that
in all cases, CAGA significantly reduces the communication

3Z0
300
zao
Z60
Z40
ZZO
ZOO

•
•

• •
CAGA heUristic mm-nodes

(a)

520 500�======1=== 4aOt-460 440��. � 420 • 400 •
�:� .

CAGA heuris tic min-nodes
(b)

l;(4,000
3 3,800-/-------__ -
� 3,600
"' 3,400t------.r--_
e3.200
� 3,000 u 2.800 L-� ___ �""_-,-IIIII,-

CAGA heuristic min-nodes
(c)

Fig. 2. Comparing CAGA with Min-nodes and the round-robin heuristic in
terms of communication cost; a)computation-intensive workflow; b) general
workflow; c) communication-intensive workflow.

50 ,---,--,
� 45 �����-----Il--
� 40����-+----��-
o 35 �����---�
]30+--------�
§ 25 +---__ �---�
� 20+--__ � __ ---__
F15

10+-___ �L_ __ �L_ __ LdL_ ___
computation gerneal communication

Fig. 3. Comparing CAGA with Min-nodes and the round-robin heuristic in
terms of the number of used PMs

cost compared with other two methods, which suggests the
effectiveness of the proposed framework.

Fig.3 compares CAGA with Min-nodes and the round
robin heuristic under different types of workflow in terms
of the number of PMs used to host the VMs. It can be
seen that although Min-nodes can achieve the least number of
PMs, CAGA only uses one more PMs than Min-nodes in all
cases. As it has been shown in Fig.3, CAGA can significantly
reduce the communication cost. These results indicate that
CAGA is able to greatly reduce communication overhead in
the Cloud with only a tiny fraction of increase in resource
usage. This is because CAGA takes the communication cost
into account when designing the framework. Moreover the
way used by CAGA to encode and calculate the VM-to-PM
mapping ensures that there will not be the excessive spare
capacity in PMs, and therefore effectively reduces the number
of PMs used to host VMs.

C. Convergence of CAGA

Fig.4(a, b and c) show the convergence of the CAGA
algorithm over time under computation-intensive, general and
communication-intensive workflows, respectively. In theory,
one major factor that influence the convergence speed is the
number of VMs to be placed into the PMs. This is because
the size of the encoded solution equals to the number of VMs
to placed. The size of the solution in turn determines the
complexity of the crossover and mutation operation. Another
major influential factor is the number of services in the Cloud,
because when calculating communication cost, CAGA needs

380
360 ��.--------------------
340T-��,,-----------------
320r---���---------------
3oot---.::.., .. __ -----
280r------=='_ ""

"""'-

260r-------------�------
240�����������

o 10 20 30 40 50 60 70 BO Seconds (a)

480
8 460�r_-------------------

·�u§ 440 \ '. "-l � 420+------1."'
\

§ 400t---------'""'______.==---------
u 380�������� '\....�-�-;:;:;::� 10 20 30 40 50 60 Seconds

(b)

1l
3'600

G
u3,400
� 3 200+------'--.,... ---� -- '--,"_.-----------

I �:���:::::::::::::::::::::::::::::::::�::::':� ::::::=='-::::' -::::--:::: --=-u 2 ,600+0 �1�0�2�oO �3� 0 �40�.,. 50�6.,, 0�7TO�B:r-'" 0
Seconds

(e)

Fig. 4. Convergence speed of CAGA; a) computation-intensive workflow, b)
general workflow, c) communication-intensive workflow

to calculate (J;ijk for each pair of services. More services,
more calculations are involved. The number of services in the
experiments are 40 and the number of VMs to be placed is
about 150 VMs. It can be seen from FigA that the CAGA
can reach the stable result for about 60 seconds in all three
cases, and the longest time (65 seconds) is spent by the
communication-intensive workflows in which the number of
VMs to be placed is 167. The results suggest that CAGA
can find a VM-to-PM placement with low communication cost
fairly efficiently.

VII. CONCLUSIONS

This paper applies the input-output model in economy
to model the resource demand for interacting services in a
Cloud. Based on the modelling, this paper further develops a
communication-aware VM-to-PM placement framework. The
framework takes into account the interaction costs among
services, and aims to find a VM-to-PM placement so that the
communication overhead can be minimized. The framework
designs a genetic algorithm to search for the placement that can
optimize communication overhead in the Cloud. The experi
mental results show that the proposed communication-aware
framework is able to significantly reduce the communicate cost
in the Cloud with little increase in the number of used PMs.

REFERENCES

[I] O. Tickoo, R. lyer, R. lllikkal, and D. Newell, "Modeling virtual
machine performance: challenges and approaches," ACM SIGMETRICS

Peiformance Evaluation Review, vol. 37, no. 3, pp. 55-60, 20 10.

[2] G. Jung, M. A. Hiltunen, K. R. Joshi, R. D. Schlichting, and C. Pu,
"Mistral: Dynamically managing power, performance, and adapta
tion cost in cloud infrastructures," in Distribltled Computing Systems
(ICDCS), 2010 IEEE 30th International Conference on. IEEE, 20 10,
pp. 62-73.

[3] A. W. Services. Amazon ec2 pricing. [Online]. Available:
http://aws.amazon.com/ec2/pricing

[4] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun, W. Wu, and
Y. Zhang, "Second net: a data center network virtualization architecture
with bandwidth guarantees," in Proceedings of the 6th International

COnference. ACM, 20 10, p. 15.

[5] F. Hermenier, X. Lorca, J.-M. Menaud, G. Muller, and J. Lawall,
"Entropy: a consolidation manager for clusters," in Proceedings of
the 2009 ACM SIGPLANISIGOPS international conference on Virtual
execwion environments. ACM, 2009, pp. 4 1-50.

[6] L. He, D. Zou, Z. Zhang, C. Chen, H. Jin, and S. A. Jarvis, "Developing
resource consolidation frameworks for moldable virtual machines in
clouds," Fwure Generation Computer Systems, 20 13.

[7] E. Feller, L. Rilling, and C. Morin, "Energy-aware ant colony based
workload placement in clouds," in Proceedings of the 2011 IEEElACM

12th International Conference on Grid Computing. IEEE Computer
Society, 20 1 1, pp. 26-33.

[8] X. Meng, V. Pappas, and L. Zhang, "Improving the scalability of
data center networks with traffic-aware virtual machine placement," in
INFOCOM, 2010 Proceedings IEEE. IEEE, 20 10, pp. 1-9.

[9] V. Petrucci, O. Loques, and D. Mosse, "A dynamic optimization model
for power and performance management of virtualized clusters," in
Proceedings of the lst International Conference on Energy-Efficient
Computing and Networking. ACM, 20 10, pp. 225-233.

[10] L. Hu, H. Jin, X. Liao, X. Xiong, and H. Liu, "Magnet: A novel
scheduling policy for power reduction in cluster with virtual machines,"
in Cluster Computing, 2008 IEEE International Conference on. IEEE,
2008, pp. 13-22.

[II] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, "Towards
predictable datacenter networks," in ACM SIGCOMM, 20 1 1.

[12] J. W. Jiang, T. Lan, S. Ha, M. Chen, and M. Chiang, "Joint Vol place
ment and routing for data center traffic engineering," in INFOCOM,
2012 Proceedings IEEE. IEEE, 20 12, pp. 2876-2880.

[13] V. Jalaparti, H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron,
"Bridging the tenant-provider gap in cloud services," in Proceedings of
the Third ACM Symposium on Cloud Computing. ACM, 2012, p. 10.

[14] P. Bahl, R. Chandra, A. Greenberg, S. Kandula, D. A. Maltz, and
M. Zhang, "Towards highly reliable enterprise network services via
inference of multi-level dependencies," in ACM SIGCOMM Computer
Communication Review, vol. 37, no. 4. ACM, 2007, pp. 13-24.

[15] Y. Chen, A. S. Ganapathi, R. Griffith, and R. H. Katz, "Analysis
and lessons from a publicly available google cluster trace," EECS

Department, University of California, Berkeley, Tech. Rep. UCBIEECS-
2010-95, 20 10.

[16] A. Williams, M. Arlitt, C. Williamson, and K. Barker, "Web workload
characterization: Ten years later," in Web content delivery. Springer,
2005, pp. 3-2 1.

[17] B. L. Miller and D. E. Goldberg, "Genetic algorithms, selection
schemes, and the varying effects of noise," Evolutionary Computation,
vol. 4, no. 2, pp. 1 13- 13 1, 1996.

[18] L. Kleinrock, Theory, volume 1, Queueing systems. Wiley-interscience,
1975.

[19] L. He, S. A. Jarvis, D. P. Spooner, H. Jiang, D. N. Dillenberger,
and G. R. Nudd, "Allocating non-real-time and soft real-time jobs in
multiclusters," Parallel and Distributed Systems, IEEE Transactions on,

vol. 17, no. 2, pp. 99- 1 12, 2006.

