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Abstract-In a Cloud system, a number of services are often 
deployed with each service being hosted by a collection of Virtual 

Machines (VM). The services may interact with each other and 
the interaction patterns may be dynamic, varying according to 
the system information at runtime. These impose a challenge 
in determining the amount of resources required to deliver a 
desired level of QoS for each service. In this paper, we present 
a method to determine the sufficient number of VMs for the 
interacting Cloud services. The proposed method borrows the 
ideas from the Leontief Open Production Model in economy. 
Further, this paper develops a communication-aware strategy to 
place the VMs to Physical Machines (PM), aiming to minimize 
the communication costs incurred by the service interactions. The 
developed communication-aware placement strategy is formalized 
in a way that it does not need to the specific communication 
pattern between individual VMs. A genetic algorithm is developed 
to find a VM-to-PM placement with low communication costs. 
Simulation experiments have been conducted to evaluate the 
performance of the developed communication-aware placement 
framework. The results show that compared with the placement 
framework aiming to use the minimal number of PMs to host 
VMs, the proposed communication-aware framework is able to 
reduce the communication cost significantly with only a very little 
increase in the PM usage. 

I. INTRODUCTION 

Numerous Cloud services may be deployed in a Cloud 
system. These services are often not isolated. After a client 
invokes a service (which is the external requests), the service 
may request further actions from other services in the Cloud 
system (which is the internal requests) during or after its execu
tion. The interactions among the services, which are demanded 
by the mix of the external and internal requests, are not static 
and may vary according to dynamic system information at 
runtime. These impose a challenge in determining the amount 
of resources required for each of these services, in order to 
deliver a desired level of Quality-of-Service (QoS). 

The services in a Cloud system are typically hosted in 
VMs. Therefore, determining the suitable resource quantity 
for the services comes down to determining the resource 
capacities allocated to the VMs that host the services. There 
are some existing works building the performance model for 
the processing capacity of a VM , i.e., establishing the relation 
between a VM's processing capability and the amount of the 
resource capacities (such as CPU percentage, memory size, 
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network bandwidth) allocated to the VM [1] [2]. For example, 
Amazon EC2 offers small, medium, large and extra large VMs 
[3]. The performance model established in the existing work 
can calculate the processing capability of these different types 
of VMs for a type of tasks. 

The work in this paper makes use of the performance 
model of a VM established in the literature. Assuming that the 
processing capability of one VM is known, this paper presents 
a method to determine the sufficient number of VMs for 
interacting services in a Cloud system. The proposed method 
borrows the ideas from the Leontief Input-Output Model in 
economy (called the 10 model in this paper). The input-output 
model conducts the input-output analysis for different industry 
sectors in an economy. It is able to capture the consumption 
relations among different sectors and calculate the equilibrium 
level of production for each sector, so as to satisfy both external 
demands from the open sector (e.g., people) and internal 
demands due to the consumptions relations among individual 
sectors in an economy. Moreover, the 10 model is able to 
analyze the impact of the increase in the external demand 
for a particular sector on the production of all sectors in the 
economy. 

The behaviors of the interacting services in a Cloud system 
bear the similarity with the behaviours of different industry 
sectors in an economy. A service supplies resources, which are 
consumed by clients and also by other services due to service 
interactions. To the best of our knowledge, this paper is the 
first one in literature that applies the 10 model in economy to 
formalize and solve the resource demand problem in Clouds. 

Further, when the services interact with each other, data 
may be communicated between them. If the VMs that host 
the services with frequent communications among themselves 
can be placed to the same Physical Machine (PM), the com
munication cost could be significantly reduced. 

There is the existing work in literature investigating the 
VM-to-PM placement problem [4] [5] [6] [7] [8]. However,the 
existing work either focuses on consolidating the independent 
VMs (i.e., there are no interaction between VMs) into re
sources, i.e., finding a VM-to-PM placement that can minimize 
the number of PMs used to host the VMs, or requires to 
know the specific communication patterns between individual 
VMs. Different methods have been developed to model such 
a VM-to-PM placement problem. For example, the placement 
problem has also been modelled as a knapsack problem [5], 
an ant colony optimization problem [7], a mixed integer 



programming problem [9] and a genetic algorithm [6]. Then 
the existing solvers and the bespoke methods were developed 
to solve the objective functions for the optimized placement 
solutions. Heuristic algorithms have also been developed to 
find the placement solutions [10]. 

This paper develops a communication-aware strategy to 
place the VMs that host the interacting services on physical 
machines, aiming to minimize the communication costs in
curred by the service interactions. A genetic algorithm is then 
developed to find a VM-to-PM placement with significantly 
reduced communication costs. In a nutshell, the main differ
ences between our work and the work in literature are that 
1) this work aims to find a placement solution to minimize 
the communication costs among services and 2) the approach 
adopted in this work does not need to know the specific 
communication pattern between individual VMs. The more 
detailed differences are discussed in II-B. 

We have also conducted experiments to compare the frame
work proposed in this paper with two existing placement 
methods: one striving to use the minimal number of PMs to 
host VMs, and the other applying the heuristic approach to 
placing VMs. Our experimental results show that the proposed 
communication-aware framework significantly outperforms the 
heuristic approach in terms of both communication cost and 
the number of used PMs, and that comparing with the method 
aiming to achieve the minimal number of used PMs, our 
communication-aware approach is able to significantly reduce 
the communication overhead in the Cloud with only a tiny 
fraction of increase in resource usage. 

The remainder of this paper is organized as follows. 
Section II-B briefly introduces the background knowledge of 
the input-output model, and then presents the related work. 
Section III presents the workload and system models. Section 
IV proposes the method of modelling resource demands of 
services in a Cloud economy. The communication-aware VM 
placement framework is presented in Section V. Section VI 
evaluates the effectiveness of the proposed framework. Finally, 
we concluded in Section VII. 

II. BACKGROUND AND REL ATED WORK 

A. Background of the 10 model 

In the 10 model, the economy is divided into sectors. 
Each sector produces goods except for the open sector, which 
only consumes goods. When a sector produces goods, it 
needs to consume the goods produced by other sectors. The 
consumption matrix C captures the consumption relations 
among sectors. An element Cij in C represents the amount 
of goods produced by sector i that have to be consumed by 
sector j in order for sector j to produce one unit (e.g., in terms 
of US dollars) of goods. The consumption matrix C represents 
the internal demands. Assume the column vector D contains 
the goods demand from the open sector, which represents the 
external demand. The element di in D represents the amount of 
goods from sector i required by the open sector. Let the column 
vector X be the equilibrium levels of production output that 
can satisfy both internal and external demands in the economy. 
The element Xi in X represents the equilibrium level of output 
by sector i. X must satisfy Eq.l, which may be solved for X 
by transfonning it to Eq.2. 

X = CX +D (1) 

X = (I - C)-l D (2) 

B. Related work 

The related work of the following three aspects is discussed 
in this subsection. In Subsection II-Bl, we discuss the related 
work about resource allocation for VMs. Then Subsection 
II-B2 discusses the existing techniques to address the VM
to-PM placement. Finally, as introduced in Subsection II-A, 
the 10 model needs to know the consumption matrix C. 
In the modelling method proposed in this work, the con
sumption matrix corresponds to the interaction relation among 
the services in the Cloud. If the interactions among services 
are static, it is straightforward to determine the interaction 
relation (i.e., calculate the elements, cd, in C. However, as 
we discussed in Section I, the service interactions may be 
dynamic, depending on the system information at runtime. 
An approach to determining the interaction relation among 
services is to analyze the invocation trace of each individual 
service in the Cloud. In Subsection II-B3, we discuss the 
existing techniques regarding this. 

1) Resource allocation for VMs: Various methodologies 
have been proposed to construct the performance model, i.e., to 
establish the relation between the performance of a VM (e.g., 
throughput, the time needed to complete a request) and the 
resource capability allocated to the VM (e.g., CPU, memory, 
network bandwidth) [1] [2] [11]. For instance, the work in 
[2] used layered queuing network to model the response time 
of a request in a multi-tiered web service hosted in VM 
environments, while hardware resources (e.g., CPU and disk) 
are modeled as processor sharing (PS) queues. The work in 
[1] modeled the contention of visible resources (e.g., CPU, 
memory, 110) and invisible resources (e.g., shared cache, 
shared memory bandwidth) as well as the overheads of the VM 
hypervisor implementation. The work in [ll] and [12] then 
investigates the impact of the network bandwidth allocated to 
a set of VMs on their collective performance. In this paper, 
we assume that the performance model is already know. In 
the simulation experiments, we uses the queuing theory as the 
exemplar technique to derive the performance model. 

There is also the work addressing resource allocation for a 
group of VMs with communications among them [13] [4]. 
The work in [13] can translate the performance goals of 
the tasks submitted by clients to the resource allocation in 
terms of the combination of the number of VMs and the 
network bandwidth between the VMs. Since different resource 
combinations may produce similar performance, the work 
further propose a method to select the resource combination 
that can balance the resource utilization. The work in [13] 
bear similarity with the work presented in this work. The work 
in [13] also calculates the number of VMs required to meet 
performance goals. The difference is that the work in [13] is 
job-oriented (or client-oriented), i.e" to calculate the resource 
allocation given the specific tasks submitted by the clients. 
However, as we discussed in Section I, service invocations 
(i.e., the tasks) may vary according to the dynamic system 
information, and it may be difficult to know the full picture of 



the tasks/workflows to be run in the Cloud. The work in this 
paper is service-oriented, which does not focus on allocating 
resources for a set of specific tasks or workflows, but aims 
to allocate resources based on the service interaction patterns. 
This work does not even have to know the full information of 
the tasks/workflows to be run. 

2) VM-to-PM placement: The VM-to-PM placement prob
lem mainly aims to consolidate resources and improve resource 
utilization [5] [10]. Various methods have been proposed 
in literature to address the VM-to-PM placement problem, 
including the knapsack modelling [5], the mixed integer pro
gramming [9], the genetic algorithms [6], the ant colony 
optimization [7] and the heuristic methods [10]. For example, 
the work in [10] develops the heuristic squeeze and release 
measures to dynamically redistribute the workloads in the 
cluster according to the workload level in each individual 
node, so as to minimize the usage of physical machines. The 
work in [5] develops a server consolidation scheme, called 
Entropy. Entropy strives to find the minimal number of nodes 
that can host a set of VMs, given the physical configurations 
of the system and resource requirements of the VMs. The 
objective is formalized as a multiple knapsack problem, which 
is then solved using a dynamic programming approach. In 
the implementation, a one-minute time window is set for the 
knapsack problem solver to find the solution. The solution 
obtained at the end of the one-minute time space is the new 
state (new VM-to-PM placement). The work in [6] designed a 
genetic algorithm to find a VM-to-PM placement that uses 
the minimal number of PMs. However, the above work is 
used to tackle the placement of independent VMs (Le., there 
are no communications among VMs), aiming to minimize the 
usage of physical machines. In this paper, we investigate the 
placement of the interacting VMs and focus on finding the VM 
placement that can minimize the communication cost. 

There is also the work tackling the placement problem for 
the VMs with inter-VM communications, aiming to minimize 
the communication costs [4] [8]. The work in [4] model such a 
VM-to-PM placement as a min-cost network flow problem and 
then use the Breadth First Search to find the optimal placement 
solution. The work in [8] then uses the classical min-cut graph 
algorithm to obtain the optimized placement solution. In order 
to model the placement problem as the min-cost network flow 
problem or the min-cut graph problem, they need to know the 
specific communication pattern between each pair of VMs. 
As we have discussed, in some cases, we may not know the 
full picture of the submitted workload, and therefore can not 
accurately determine the communication pattern between each 
individual VM. In this paper, we model the interactions among 
the services, and treat a service (and the set of VMs supporting 
the service) as a whole without the need to know the specific 
communication pattern between each pair of VMs. 

3) Anaysis of invocation pattern: There are the existing 
techniques to obtain the invocation pattern of the services 
[14] [15] [16]. The work in [14] implements a multi-level 
probabilistic model to infer the probability of a service call
ing another service. The fundamental idea is to monitor the 
packets sent and received by a service, and then compute the 
dependency probability between the services by leveraging the 
observation that if accessing service B depends on service A, 
then packets exchanged with A and B are likely to co-occur. 

TABLE I. NOTATIONS 

notations Explanation 
C consumption matrix 
Cij the amount of goods produced by sector i that have to be consumed 

by sector j in order for sector j to produce one unit of goods 
5 the number of services 
Si service i 
eij the amount of data that are sent when service Si invokes S j 
Pi) the probability that one invocation of Si causes the invocation of Sj 
ni physical machine i 
VM' a virtual machine hosting service Si 
Vik the number of V M� s in ni 
Pji the possibility that executing S j causes a further invocation of S i 

The work in [15] then uses the k-means clustering technique 
in data mining area to analyze the service trace and calculate 
the correlation probability between services. 

III. WORKLOAD AND SYSTEM MODELS 

§ = {81' ... ,8M} denotes a set of M services deployed in 
a Cloud. Ai denotes the arrival rate of the requests directly 
from the clients for service 8i. Pij denotes the probability 
that after service 8i is invoked and executed, service 8i will 
further call service 8j. A service is hosted in a set of VMs 
(i.e., a virtual cluster). Assume each VM that hosts the same 
service (i.e., each VM in a virtual cluster) is allocated with the 
same resource capacity (e.g, the proportion of CPU, memory 
size, etc). This assumption is reasonable because this is the 
normal practice when using a virtual cluster to host a service 
[11]. V Mi 

denotes a VM that hosts service 8i. There may 
be multiple VMs in a PM. We assume that PMs and network 
links are homogeneous, i.e, the PMs and the network links con
necting any two PMs in the Cloud has the same performance. 
This assumption is reasonable since homogeneous machines 
and communication networks are typically used to construct a 
Cloud system. 

Given the arrival rate of the requests for service 8i and 
given V Mi

's resource capacity, there are a number of existing 
techniques in literature [1] and [2] to calculate the adequate 
number of V MiS that can satisfy the desired QoS in terms of 
a particular performance metric (e.g., average waiting time of 
the requests, throughput). 

Table.! lists the notations used in the paper. 

IV. MODELLING RESOURCE DEMANDS OF CLOUD 

SERVICES 

This section applies the 10 model to formalize and cal
culate the equilibrium level of resource capacity demanded 
by the external clients and the interacting services in a Cloud 
economy. The constructed model is called the Cloud-IO model 
in this paper. In order to apply the 10 model to formalize 
a Cloud economy, we have to use the entities in the 10 
model (i.e., sector and goods) to represent the entities in Cloud 
environments, such as service, request, VM, resource, etc. 

In this paper, a service in the Cloud economy is regarded 
as a sector in the 10 model while the external clients are 
regarded as the open sector, which is straightforward. However, 
the challenge is to identify the entity in the Cloud economy 
that is suitable to be regarded as goods, and also determine 
the consumption relations among services. We first attempted 
a straightforward option and use the requests sent by the 



clients or the services to represent goods. This option seems to 
be intuitive, because a service processes (consumes) requests 
from clients and other services, and also generates (produces) 
requests to invoke other services. Then the problem comes 
down to how to determine the resource capacity for services so 
that the requests can be processed in a way that the desired QoS 
can be met. However, we later realize that it is not appropriate 
to treat the requests as goods. This is because the requests 
generated by services are not going to be consumed by the 
clients while the goods produced in the 10 model are consumed 
by the open sector. In this paper, a group of VMs hosting a 
service are regarded as goods produced by the service. 

Now we present how to determine the consumption rela
tions among services, i.e, obtain the consumption matrix. Note 
that Cij in the consumption matrix C represent the amount 
of goods produced by sector i that have to be consumed by 
sector j in order for sector j to produce one unit of goods 
(e.g., in terms of US dollars). Consider one VM (a unit of 
good) of service Sj. 1/Jj denotes the arrival rate of the requests 
that one VM of service Sj (i.e., one V Mj) can handle to 
deliver the specified QoS. As discussed in Section III, there are 
existing techniques to calculate 1/Jj, given the resource capacity 
allocated to the VM. We use a function f to represent such 
a technique, i.e., Eq.3, where the first parameter represents 
service index (i.e., Sj), the second parameter Rj represents 
the resource capacity allocated to each VM of Sj (we assume 
every VM in the same service has the same resource capacity), 
and the third parameter represent the number of VMs of the 
service. 

(3) 

Every time service Sj is invoked, there is the possibility of 
Pji that Sj will send a request to further invoke Si. Therefore, 
in a time unit one V Mj sends 1/Jj x Pji requests to Si. The 
number of VMs that need to be produced by Si to handle the 
requests with the arrival rate of 1/Jj x Pji is then equivalent to 
the goods produced by service Si that have to be consumed by 
service Sj in order for Sj to produce one unit of goods (i.e., one 
VM), which is actually Cij in the 10 model. Again, the existing 
techniques in literature can calculate Cij based on the arrival 
rate of 1/Jj x Pji and the given resource capacity aJlocated to 
each V Mi. We use a function g to represent such a technique, 
i.e., Eq.4, where the first and second parameters have the same 
meanings as those in Eq.3, and the third parameter represents 
the arrivaJ rate of the requests. 

(4) 

In doing so, we have established the consumption matrix 
in the Cloud-IO model. Let Ai be the rate at which the clients 
(open sector) send the requests to service Si. Then we can use 
the g function in Eq.4 to calculate the number of V Mi 

that 
have to be produced by Si to process the requests with the 
arrival rate of Ai, which is di in the column vector D in the 
10 model. Namely, di can be obtained using Eq.S. 

di = g(i, R, Ai) (5) 

By doing so, the external demand vector D is obtained. 
X = [Xl"",Xi, ... ,XM]T denotes the column vector that 
represents the number of VMs required for each of M services 
in the Cloud economy. X can be caJculated by Eq. 2. 

V. THE COMMUNICATION-AWARE VM PL ACEMENT 

Section IV calculates the number of VMs required for each 
service in the Cloud. This section investigate the issues of 
mapping all the VMs obtained in Section IV to PMs. The 
VM-to-PM mapping in literature often focuses on minimizing 
the number of PMs used to accommodate the VMs, so as to 
minimize the resource and/or energy consumption. However, 
in this paper, there is the possibility that after a service is run, 
it may send a request to another service for further actions. 
Some data may be sent along with the request. If the VMs 
that host the different services with frequent communications 
can be placed in the same PM, then the communication cost 
could be reduced. This section develops a framework to find 
the VM-to-PM mapping that minimizes the communication 
cost in the Cloud. 

According to the Cloud-IO model, Cij represents the num
ber of VMs that need to be produced by Si to handle the 
requests send by one VM in Sj. Therefore, if the ratio of the 
number of V MiS to the number of V Mj in PM nk, denoted 
as (Xijk, is no less than to Cij, then the requests (along with 
the data) sent by the V Mj s can be handled by the V MiS in 
the same PM without breaching the QoS of Si, and therefore 
eliminates the necessity to send the requests and data to the 
V Mi 

in a different PM. On the contrary, if (Xijk is less than Cij, 
then a proportion of the requests sent by the V Mj s in nk have 
to be processed by V MiS in a different PM. The greater the 
difference between Cij and (Xijk is, a larger proportion of the 
requests and data sent by V MJ s in nk have to be sent out of nk 
and therefore a higher communication cost in the Cloud. The 
communication-aware service placement framework developed 
in this paper is based on this insight and aims to find a VM
to-PM mapping with the minimaJ communication cost in the 
Cloud. 

A. Formalizing the problem 

This section models the total communication cost incurred 
by an arbitrary VM-to-PM mapping in the Cloud. As discussed 
above, when (Xij k is less than Cij, the communication wi]] 
occur between nk and another PM where there are V M'. 
Vik denotes the number of V MiS in nk, given a VM-to-PM 
mapping M. The communication cost incurred by the mapping 
M, denoted as C(M), can be calculated by Eq. 6 and Eq.7. In 
Eq.7, the term (f(j ,Rj,Vjk) x Pji - !(i ,Ri,Vik)) calculates 
that the amount of requests that are sent from Sj in PM nk 
to Si in a time unit, but cannot be handled by V M's in nk 
(if (Xijk < Cij) in order to maintain the QoS. Therefore, these 
requests have to be sent to be processed by V MiS in a different 
PM. The number of these requests times eji is then the total 
amount of data that have to be communicated in the Cloud 
caused by the inadequate resource capacity of Si in PM nk 
comparing with that of Sj in the same PM. Since we assume 
that the communication network in the Cloud is homogeneous, 
we do not have to consider which PM these data will be sent 
to. The communication cost is then the sum of aJl these data 



that have to be sent out of the local PM by any service in the 
Cloud, which is Eq.6. 

N M M 

C(M) = LLLf3ijk 
k=lj=li=1 

{ eji x (f(j,Rj,Vjk) x Pji --: !(i ,Ri,Vik)) 
f3ijk = l f (Xijk < Cij 

o otherwise 

(6) 

(7) 

The objective is to find a VM-to-PM mapping such that 
C(M) is minimized, subject to certain constraints. This can 
be formalized as Eq. 8, where Xi is the number of V MiS 
obtained in Section IV. 

miminize C(M), 
N 

subject to: Vi: 1 ::; i ::; M, L Vik = Xi (8) 
k=1 

B. Designing the genetic algorithm 

A Genetic Algorithm, called CAGA (Communication
Aware Genetic Algorithm), is developed in this paper. CAGA 
tries to find the optimal mapping with the least communication 
cost. In a typical Genetic Algorithm (GA), a solution is 
encoded and then the crossover and mutation operations are 
applied to evolve the solutions. Moreover, a fitness function 
is used to judge the quality of the solutions and guide their 
evolution direction so that better solutions can be gradually 
generated over generations. In the GA developed in this paper, 
the communication cost defined in Eq.6 is used as the fitness 
function. This section mainly presents the encoding of the 
solution, the crossover and the mutation operations designed 
in our GA. 

1) Encoding the solution and fitness function.: In CAGA, 
a solution is a VM-to-PM mapping. It is encoded as an one
dimensional array, denoted as A. An element ai in A holds the 
index of a VM. Br denotes the capacity of the r-th type of 
resources in a PM. Given an encoded solution, the PM that a 
VM is mapped to is determined in the following way. Starting 
from the first element in the solution, the VMs are placed into 
P MI in the order of their positions in A, until the total capacity 
of the VMs starts to exceed the capacity of P MI. The VMs are 
then placed into the next PM. Formally, if the first k PMs have 
been fully occupied and the VM in ai (i.e., V MaJ is the first 
VM that cannot be placed into P Mk any more, the VMs in 
the positions from ai to aj-I should be placed into P Mk+I. j 
can be determined using Eq. 9, in which br(au) is the capacity 
of the r-th type of resource allocated to the VM with the index 
of au. For each of R types of resource in consideration, Eq. 9 
obtain the least jr such that the total capacity of that resource 
of the VMs from ai to ajr begins to exceed Br. Then j is 
the minimum number among jr (1 ::; r ::; R). The procedure 
repeats until all VMs have been placed into PMs. By doing 
so, CAGA knows which PM a VM is placed into. 

j = min{jrll ::; r ::; R} 
j, 

subject to: L br(au) > Br 
(9) 

u=i 

In the encoding, CAGA starts to place a VM to a new PM 
only when the current PM does not have enough remaining 
capacity to host the VM. Therefore, the method used by 
CAGA to encode and calculate the VM-to-PM mapping will 
not generate excessive spare capacity in PMs, and therefore 
reduce the number of PMs used to host VMs. Indeed, our 
experiments show that the number of PMs used by CAGA is 
very close to that obtained by the VM-to-PM mapping method 
aiming to use the minimal number of PMs to host VMs. 

CAGA aims to find a VM-to-PM mapping with minimal 
communication cost. Therefore Eq. 6 that calculates the com
munication cost of a mapping is used as the fitness function 
of a solution. 

2) Selecting solutions.: In GA, the solutions need to be 
selected from the current generation of solutions to perform 
the crossover and the mutation operations. CAGA applies 
the tournament method [17] to select the solutions used to 
generate next generation of solutions. The tournament method 
is as follows. Assume there are h solutions in one generation. 
Each time, CAGA randomly selects k solution (k is called 
tournament size) from the current generation. Then CAGA 
takes the one with the lowest communication cost among these 
k solutions and uses it as one parent solution in the crossover 
operation. The same way is used to obtain the other parent 
solution. Then the crossover operation, which is presented in 
subsection V-B3.C, is performed over the two parent solutions 
to generate two child solutions. The procedure repeats until 
there are h solutions in the next generation. 

3) Crossover and mutation: The two-point crossover is 
used in CAGA. In the crossover, two points are randomly 
selected for two parent solutions to divide each parent into 
three portions. All VMs in the middle portion are swapped 
between the parent solutions. The resulting two solutions are 
children solutions in the new generation. But such a swap may 
cause repetitive VMs in a child solution, i.e., there may be two 
VMs with the same index in one solution. In order to eliminate 
such repetitive VMs, the swapping action is performed in the 
following way in CAGA. At position i in the middle portion of 
both parents, ali and a2i are the indexes of VMs in parent 1 
and parent 2, respectively. In parent 1, the crossover operation 
finds the VM with the index of a2i and swap ali and a2i. 
In parent 2, similarly, the crossover operation finds the VM 
with the index of ali and swap a2i and ali. Such swapping 
is performed at every position in the middle portion of two 
parents. By doing so, we effectively swap the middle portions 
between parents, and the resulting children solutions will not 
have the repetitive VMs. 

After crossover, the mutation operation is performed on the 
two newly generated child solutions. A mutation probability (j 
is set. For each VM in a child solution, there is the probability 
of (j that the VM will swap the positions with another randomly 
selected VM in the child solution. The mutated child solutions 
become the solutions in the new generation. 



VI. PERFORMANCE EVALUATION 

We have conducted simulation experiments to evaluate 
the performance of the proposed communication-aware frame
work. A pool of S Cloud services are assumed in a Cloud. 
In the simulation experiments of this work, the workflows 
are generated to simulate the interactions among services. In 
real systems, we typically do not know the entire invocation 
work flows across multiple services in the Cloud. In this case, 
the service interaction patterns, i.e., Pji in Table I, can be 
obtained by analyzing the invocation trace of each individual 
service in the Cloud, or analyze the source code of a service 
and its execution flow. 

With the information of the generated workflows, Pji 
can be calculated as follows. A workflow has h nodes with 
the random topology. A node in a workflow represents the 
invocation of a service randomly selected from the service 
pool. Therefore, a service may appear multiple times in a 
workflow. A link from service (node) Si to Sj represents that 
after Si is run, Si sends a request to further invoke Sj. The 
weight of a link represents the amount of data that needs to 
be sent from Si to Sj when Si invokes Sj. A workflow has a 
entry service (the first service that has to been invoked in the 
workflow). External requests arrive to invoke the entry service, 
which is regarded as the external demand. The arrival rate of 
the external requests to workflow Wi is denoted as Ai. The 
invocations among services inside the workflow is regarded 
as internal demand. With the topology of Wi and Ai, we can 
easily calculate the following variables for Wi: 1) the rate at 
which Sj is invoked (denoted as Ai (Sj ) ; 2) the rate at which Sj 
invokes Sk (denoted as Ai (Sj, Sk) ; 3) the the amount of data 
sent from Sj to Sk in a time unit (denoted as ei (Sj, Sk) ' In Wi, 
the probability of Sj invoking Sk (denoted as Pi (Sj, Sk) can be 

calculated as \(is(';;)k). If the number of different workflows 

generated in the simulation is W, then the probability of Sj 
invoking Sk (i.e., Pjk in TableI) can be calculated as Eq.lO. 
The total amount of data sent from Sj to Sk (denoted as 
Ejk) in a time unit can be calculated as Eq.ll, while the 
total arrival rate of the requests to Sj, denoted as Aj, can 
be computed using Eq.12. In the experiments, three types of 
workflows are generated in the experiments: communication
intensive, computation-intensive and general workflow. In 
the communication-intensive, computation-intensive, and gen
eral workflow, eij is randomly obtained from the range of 
[min_comme, maxJomme], [min_compe, max_compel and 
[min�ene, max�ene], respectively. The computation time of 
a node in all workflows is randomly selected from the range of 
[minJomp, maxJomp] with the average value of avgJomp. 

(10) 

W 

Ejk = 2 )Ai x ei (sk,  Sj)) (11) 
i=l 

w 

Aj 
= 2:)Ai X Ai (Sj)) (12) 

i=l 

TABLE II. EXPERIMENTAL PARAMETERS 

Parameters I Value 
S 40 
B 50 
[min comme, max comme] [20,30] 
[[min...,gene. max...,gene] [10,20] 
avg comp 15 
h( thenumbero jtask sinawor k j low) 40 
W 3 
lb min], [b max] [5, 15] 
[min compe, max compe] [2,8] 
[min comp, max comp] [10.20] 
slack 20% 
8 (mutation probability) 0.2 

There are the existing techniques [1] to obtain the function 
f in Eq.3. The value of the function f is the processing rate 
of a VM. In the experiments, we apply the queuing theory 
[18] to obtain the g function. Assume that the external requests 
arrive following the Poisson process, and the computation time 
of a service and the communication time of sending data 
between services follow the exponential process. According 
to the queuing theory, the average response time of service 
si, denoted as Ti, can be calculated by Eq.13, where I Si l is 
the number of VMs that is used to host Si, {li is the mean 
process rate of a VM hosting Si (which is the inverse of mean 
computation time of an invocation in the VM of Si and is 
actually the value of the f function) and Pn is the probability 
that the number of requests being processed in the virtual 
cluster is no less than n. Assume the QoS of service Si is that 
the average response time of an invocation of the service is no 
more than qi. qi is normally set as avg_comp x (1 + slack). 
Given Ai 

and qi, we can calculate from Eq.13 the minimum 
I Si l that satisfies the QoS, which is the g function in EqA 
and Eq.5. pjk has been calculated in Eq.lO. Therefore, cd in 
the consumption matrix can be calculated using EqA. With the 
arrival rate of the external requests, we can apply the queueing 
theory to calculate the number of VMs required to serve the 
external requests, which is D in Eq.1. Finally, the number of 
VMs allocated to each service can be calculated using Eq.2. 

1 1 
Ti = - +Pn . 

{li I Si l X {li - N 
(13) 

The capacity of a physical machine is set to be B. The 
resource capacity allocated to a VM in Si is set to be bi, which 
is randomly selected from the range of [b_min, b_max]. Unless 
otherwise stated, the value of the experimental parameters are 
set as in Table II. 

The existing work on placing VMs to PMs mainly focuses 
on achieving the minimum number of PMs used to host the 
VMs [5] [10] (which is called the Min-nodes algorithm in 
this paper), assuming that the VMs are independent with each 
other. The CAGA framework developed in this paper takes the 
service (VM) interactions into account. The Min-nodes method 
presented in [5] models the VM-to-PM placement as the bin
packing problem and then uses the existing solver to solve 
the problem for the VM-to-PM placement that minimizes the 
usage of PMs. In the experiments, we compared CAGA with 
the Min-nodes algorithm in terms of communication cost and 
the number of used PMs. Moreover, we compared CAGA with 
a heuristic VM-to-PM placement algorithm. In the heuristic, 



12 30 
�10 � 25 "= 0.2 

'0 8 '0 20 - "=0.6 
Ii; 6 " 

.D 1; 15 
� 4 E 

E10 " 2 " J:; .J:; 5 f- f- 0 10 20 30 40 0 10 20 30 40 Service Index Service Index 
(a) (b) 

50 
�40 i'40 

�30 �30 " 
�20 .D !5 20 E c �10 1! 10 

>- -E 

10 20 30 40 10 20 30 4C 
Service Index Service Index 

(c) (d) 

Fig. 1. Impact of the increase in external demands; a)computation-intensive 
workflow; b) general workflow; c) communication-intensive workflow; d) the 
three types of workflow combined. 

the VMs from different services are placed in a PM in a round
robin fashion [19]. Starting from so,the heuristic algorithm 
places a VM in Si to the PM, then places a VM in S(i+1)%S to 
the PM, until the PM cannot accommodate more VMs. Then 
the VMs are placed to a new PM in the same fashion, except 
for starting from the VM that cannot be placed to the previous 
PM. 

A. Impact of the increase in external demands 

The experiments presented in this subsection investigates 
the impact of service interactions on resource capacity allo
cated to each service. Fig.l(a, b and c) show the number of 
VMs allocated to each service under different arrival rates of 
extemal requests for communication-intensive, computation
intensive and general workflows, respectively. Fig.ld shows 
the the number of VMs allocated to each service for the three 
work flows combined. The number of VMs is obtained using 
the Cloud-IO model. As can be seen from Fig.l(a, b and c), 
when the arrival rate of external requests increases, not only the 
number of VMs allocated to the entry service of the workflow 
increases (Sl in the figures), but that allocated to other services 
in the workflow also increases. The level of increment in some 
services is even much greater than that in the entry service. 
With the Cloud-IO model, we can quantitatively obtain the 
impact of the increase in external demands on the resource 
requirements on each service in the Cloud. For example, in 
Fig 1 b, when the arrival rate of the external requests increase 
from 0.2 to 0.6, it imposes the biggest resource burden on 
service S27, whose VM quantity increases from 10 to 28. 

B. Comparing CAGA with the existing placement methods 

This subsection compares CAGA with two existing VM
to-PM placement methods: Min-nodes [5] and the round
robin heuristic [19]. Fig.2(a, b and c) present the results for 
computation-intensive, general and communication-intensive 
workflows, respectively. It can be seen from these figures that 
in all cases, CAGA significantly reduces the communication 
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Fig. 2. Comparing CAGA with Min-nodes and the round-robin heuristic in 
terms of communication cost; a)computation-intensive workflow; b) general 
workflow; c) communication-intensive workflow. 
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Fig. 3. Comparing CAGA with Min-nodes and the round-robin heuristic in 
terms of the number of used PMs 

cost compared with other two methods, which suggests the 
effectiveness of the proposed framework. 

Fig.3 compares CAGA with Min-nodes and the round
robin heuristic under different types of workflow in terms 
of the number of PMs used to host the VMs. It can be 
seen that although Min-nodes can achieve the least number of 
PMs, CAGA only uses one more PMs than Min-nodes in all 
cases. As it has been shown in Fig.3, CAGA can significantly 
reduce the communication cost. These results indicate that 
CAGA is able to greatly reduce communication overhead in 
the Cloud with only a tiny fraction of increase in resource 
usage. This is because CAGA takes the communication cost 
into account when designing the framework. Moreover the 
way used by CAGA to encode and calculate the VM-to-PM 
mapping ensures that there will not be the excessive spare 
capacity in PMs, and therefore effectively reduces the number 
of PMs used to host VMs. 

C. Convergence of CAGA 

Fig.4(a, b and c) show the convergence of the CAGA 
algorithm over time under computation-intensive, general and 
communication-intensive workflows, respectively. In theory, 
one major factor that influence the convergence speed is the 
number of VMs to be placed into the PMs. This is because 
the size of the encoded solution equals to the number of VMs 
to placed. The size of the solution in turn determines the 
complexity of the crossover and mutation operation. Another 
major influential factor is the number of services in the Cloud, 
because when calculating communication cost, CAGA needs 
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Fig. 4. Convergence speed of CAGA; a) computation-intensive workflow, b) 
general workflow, c) communication-intensive workflow 

to calculate (J;ijk for each pair of services. More services, 
more calculations are involved. The number of services in the 
experiments are 40 and the number of VMs to be placed is 
about 150 VMs. It can be seen from FigA that the CAGA 
can reach the stable result for about 60 seconds in all three 
cases, and the longest time (65 seconds) is spent by the 
communication-intensive workflows in which the number of 
VMs to be placed is 167. The results suggest that CAGA 
can find a VM-to-PM placement with low communication cost 
fairly efficiently. 

VII. CONCLUSIONS 

This paper applies the input-output model in economy 
to model the resource demand for interacting services in a 
Cloud. Based on the modelling, this paper further develops a 
communication-aware VM-to-PM placement framework. The 
framework takes into account the interaction costs among 
services, and aims to find a VM-to-PM placement so that the 
communication overhead can be minimized. The framework 
designs a genetic algorithm to search for the placement that can 
optimize communication overhead in the Cloud. The experi
mental results show that the proposed communication-aware 
framework is able to significantly reduce the communicate cost 
in the Cloud with little increase in the number of used PMs. 
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